Reverse Monte Carlo modelling of crystalline disorder

The reverse Monte Carlo (RMC) modelling method, although initially developed for interpreting structural data from liquids and amorphous materials, has been extensively applied to similar data from crystalline systems. This has been especially beneficial for materials which display a large amount of disorder. The work in this area will be briefly reviewed here, including a summary of the range of crystalline materials which have been studied using RMC modelling. Recent developments made specifically to improve the RMC modelling method for crystalline systems will also be described.

[1]  D. Keen,et al.  Erratum: Phonons from Powder Diffraction: A Quantitative Model-Independent Evaluation [Phys. Rev. Lett. 93, 075502 (2004)] , 2005 .

[2]  Martin T. Dove,et al.  Neutron total scattering method: simultaneous determination of long-range and short-range order in disordered materials , 2002 .

[3]  P. Madden,et al.  Nature of the superionic transition in Ag+ and Cu+ halides , 2003 .

[4]  D. Keen,et al.  Phonons from powder diffraction: a quantitative model-independent evaluation. , 2004, Physical review letters.

[5]  Stephen A. Wells,et al.  Real-space rigid-unit-mode analysis of dynamic disorder in quartz, cristobalite and amorphous silica , 2002 .

[6]  D. Keen,et al.  Diffuse Neutron Scattering from Crystalline Materials , 2001 .

[7]  D. Keen Disordering phenomena in superionic conductors , 2002 .

[8]  S. Wells,et al.  Finding best-fit polyhedral rotations with geometric algebra , 2002 .

[9]  R. Mcgreevy,et al.  MCGR: An Inverse Method for Deriving the Pair Correlation Function , 1999 .

[10]  R. Mcgreevy,et al.  Structural modelling of glasses using reverse Monte Carlo simulation , 1990, Nature.

[11]  R. Mcgreevy,et al.  Structural disorder in AgBr on the approach to melting , 1990 .

[12]  K. Clausen,et al.  Structural disorder in AgBr: Reverse Monte Carlo analysis of powder neutron-diffraction data , 1990 .

[13]  R. Mcgreevy,et al.  Reverse Monte Carlo modelling , 2001 .

[14]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[15]  Martin T. Dove,et al.  Structural disorder and loss of piezoelectric properties in α-quartz at high temperature , 2002 .

[16]  R. Mcgreevy,et al.  Structural changes in silver bromide at the melting point , 1992 .

[17]  D. Keen A comparison of various commonly used correlation functions for describing total scattering , 2001 .

[18]  A. Azad,et al.  Preparation, crystal and magnetic structure of the double perovskite Ba2FeWO6 , 2002 .

[19]  D. Keen,et al.  MCGRtof: Monte Carlo G(r) with resolution corrections for time-of-flight neutron diffractometers , 2001 .

[20]  A. Soper,et al.  Scientific Reviews: GEM: The General Materials Diffractometer at ISIS-Multibank Capabilities for Studying Crystalline and Disordered Materials , 2004 .

[21]  Mellergård,et al.  Reverse Monte Carlo modelling of neutron powder diffraction data. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[22]  B. L. Averbach,et al.  Monte Carlo models of atomic arrangements in arsenic-selenium glasses , 1974 .

[23]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[24]  Roy Kaplow,et al.  Atomic Arrangement in Vitreous Selenium , 1968 .

[25]  R. Mcgreevy,et al.  Recent developments of the rmcpow method for structural modelling , 2000 .