An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires.

Progress in the terahertz (THz) region of the electromagnetic spectrum is undergoing major advances, with advanced THz sources and detectors being developed at a rapid pace. Yet, ultrafast THz communication is still to be realized, owing to the lack of practical and effective THz modulators. Here, we present a novel ultrafast active THz polarization modulator based on GaAs semiconductor nanowires arranged in a wire-grid configuration. We utilize an optical pump-terahertz probe spectroscopy system and vary the polarization of the optical pump beam to demonstrate ultrafast THz modulation with a switching time of less than 5 ps and a modulation depth of -8 dB. We achieve an extinction of over 13% and a dynamic range of -9 dB, comparable to microsecond-switchable graphene- and metamaterial-based THz modulators, and surpassing the performance of optically switchable carbon nanotube THz polarizers. We show a broad bandwidth for THz modulation between 0.1 and 4 THz. Thus, this work presents the first THz modulator which combines not only a large modulation depth but also a broad bandwidth and picosecond time resolution for THz intensity and phase modulation, making it an ideal candidate for ultrafast THz communication.

[1]  W. F. Gorham A New, General Synthetic Method for the Preparation of Linear Poly‐p‐xylylenes , 1966 .

[2]  J. Nishizawa,et al.  Widely Frequency-Tunable Terahertz Wave Generation and Spectroscopic Application , 2004, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[3]  Wai Lam Chan,et al.  A spatial light modulator for terahertz beams , 2009 .

[4]  Maya R. Gupta,et al.  Recent advances in terahertz imaging , 1999 .

[5]  Qianfan Xu,et al.  High-contrast terahertz modulator based on extraordinary transmission through a ring aperture. , 2011, Optics express.

[6]  Ajay Nahata,et al.  A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling , 1996 .

[7]  A. Davies,et al.  Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers , 2004 .

[8]  Anna Fontcuberta i Morral,et al.  Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility. , 2015, Nano letters.

[9]  Itsunari Yamada,et al.  Terahertz wire-grid polarizers with micrometer-pitch Al gratings. , 2009, Optics letters.

[10]  Emma Pickwell-MacPherson,et al.  Exploiting total internal reflection geometry for efficient optical modulation of terahertz light , 2016 .

[11]  Abul K. Azad,et al.  Hybrid metasurface for ultra-broadband terahertz modulation , 2014 .

[12]  E. Hendry,et al.  Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy , 2011 .

[13]  J. B. Stark,et al.  Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection , 1998 .

[14]  M F Crommie,et al.  Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. , 2015, Nano letters.

[15]  Ci-Ling Pan,et al.  Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate. , 2006, Optics letters.

[16]  Cavity enhanced terahertz modulation , 2014 .

[17]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[18]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[19]  J. Coutaz,et al.  A reliable method for extraction of material parameters in terahertz time-domain spectroscopy , 1996 .

[20]  Gottfried Strasser,et al.  Terahertz phase modulator , 2000 .

[21]  Matthew C. Beard,et al.  Measuring Intramolecular Charge Transfer via Coherent Generation of THz Radiation , 2002 .

[22]  Hannah J Joyce,et al.  Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping. , 2016, ACS nano.

[23]  David R. Smith,et al.  Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves , 2008 .

[24]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[25]  M. Lima,et al.  A reel-wound carbon nanotube polarizer for terahertz frequencies. , 2011, Nano letters.

[26]  Chennupati Jagadish,et al.  Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.

[27]  J. Mørk,et al.  Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation. , 2014, Physical review letters.

[28]  A. R. T. Nugraha,et al.  Giant Terahertz-Wave Absorption by Monolayer Graphene in a Total Internal Reflection Geometry , 2017 .

[29]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[30]  Daniel M. Mittleman,et al.  An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range , 2014 .

[31]  Ci-Ling Pan,et al.  Polarizing terahertz waves with nematic liquid crystals. , 2008, Optics letters.

[32]  Markus Kress,et al.  Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. , 2004, Optics letters.

[33]  M. Unlu,et al.  Switchable Scattering Meta-Surfaces for Broadband Terahertz Modulation , 2014, Scientific Reports.

[34]  Jingdong Luo,et al.  Terahertz all-optical modulation in a silicon–polymer hybrid system , 2006, Nature materials.

[35]  Xiang Zhang,et al.  Photoinduced handedness switching in terahertz chiral metamolecules , 2012, Nature Communications.

[36]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.

[37]  Jing Wang,et al.  Broadband terahertz circular polarizers with single- and double-helical array metamaterials. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  Xicheng Zhang,et al.  Terahertz Wave Air Photonics: Terahertz Wave Generation and Detection With Laser-Induced Gas Plasma , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Electrical terahertz modulator based on photo-excited ferroelectric superlattice , 2018, Scientific Reports.

[40]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[41]  P. Ajayan,et al.  High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. , 2014, Nano letters.

[42]  Xiang Zhang,et al.  Switching terahertz waves with gate-controlled active graphene metamaterials. , 2012, Nature materials.

[43]  Ajay Nahata,et al.  Coherent Detection of Freely Propagating Terahertz Radiation by Electro-optic Sampling in a Poled Polymer , 1996, Organic Thin Films for Photonic Applications.

[44]  Sandra Wolff,et al.  Polarization-independent active metamaterial for high-frequency terahertz modulation. , 2009, Optics express.

[45]  Cyril C. Renaud,et al.  The 2017 terahertz science and technology roadmap , 2017, Journal of Physics D: Applied Physics.

[46]  Martin Koch,et al.  Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators , 2009 .

[47]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[48]  Fan Wang,et al.  Single nanowire photoconductive terahertz detectors. , 2015, Nano letters.

[49]  Chennupati Jagadish,et al.  Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires. , 2014, Nano letters.

[50]  Hannah J. Joyce,et al.  A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy , 2016 .

[51]  M. Menu,et al.  Terahertz imaging for non-destructive evaluation of mural paintings , 2008 .

[52]  T. Drysdale,et al.  Direct fabrication of terahertz optical devices on low-absorption polymer substrates. , 2009, Optics letters.

[53]  Chennupati Jagadish,et al.  Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer. , 2012, Nano letters.

[54]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[55]  Andrew J. Gatesman,et al.  An anti-reflection coating for silicon optics at terahertz frequencies , 2000 .

[56]  Edmund H. Linfield,et al.  Magnetic-field-induced enhancement of terahertz emission from III–V semiconductor surfaces , 2002 .

[57]  Laura M. Herz,et al.  An ultrafast carbon nanotube terahertz polarisation modulator , 2014 .

[58]  Lyubov V. Titova,et al.  Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires , 2006 .

[59]  Masayoshi Tonouchi,et al.  Carbon nanotube terahertz polarizer. , 2009, Nano letters.

[60]  Chennupati Jagadish,et al.  Defect-free GaAs/AlGaAs core-shell nanowires on Si substrates , 2011 .

[61]  H. Rabitz,et al.  Closing the Loop on Bond Selective Chemistry Using Tailored Strong Field Laser Pulses , 2002 .

[62]  Chennupati Jagadish,et al.  Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors. , 2016, Nano letters.

[63]  K. Reimann Table-top sources of ultrashort THz pulses , 2007 .