Goal oriented adaptivity in the IRGNM for parameter identification in PDEs: I. reduced formulation

In this paper we study adaptive discretization of the iteratively regularized Gauss–Newton method (IRGNM) with an a posteriori (discrepancy principle) choice of the regularization parameter in each Newton step and of the stopping index. We first of all prove convergence and convergence rates under some accuracy requirements formulated in terms of four quantities of interest. Then computation of error estimators for these quantities based on a weighted dual residual method is discussed, which results in an algorithm for adaptive refinement. Finally we extend the results from the Hilbert space setting with quadratic penalty to Banach spaces and general Tikhonov functionals for the regularization of each Newton step.

[1]  Rolf Rannacher,et al.  An Optimal Control Approach to A-Posteriori Error Estimation , 2001 .

[2]  Thorsten Hohage,et al.  ITERATIVE REGULARIZATION METHODS IN INVERSE SCATTERING , 1999 .

[3]  A. Bakushinsky,et al.  Iterative Methods for Approximate Solution of Inverse Problems , 2005 .

[4]  Roland Becker,et al.  A Posteriori Error Estimates for Parameter Identification , 2004 .

[5]  B. Hofmann,et al.  Convergence rates for the iteratively regularized Gauss–Newton method in Banach spaces , 2010 .

[6]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[7]  Barbara Kaltenbacher,et al.  Goal oriented adaptivity in the IRGNM for parameter identification in PDEs: II. all-at-once formulations , 2013, 1310.6576.

[8]  Andreas Rieder,et al.  On the regularization of nonlinear ill-posed problems via inexact Newton iterations , 1999 .

[9]  Roland Becker,et al.  A posteriori error estimation for finite element discretization of parameter identification problems , 2004, Numerische Mathematik.

[10]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[11]  V. Zvyagin,et al.  Attractors of equations of non-Newtonian fluid dynamics , 2014 .

[12]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[13]  Jens Flemming,et al.  Theory and examples of variational regularization with non-metric fitting functionals , 2010 .

[14]  B. Kaltenbacher,et al.  Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems , 2009 .

[15]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[16]  Barbara Kaltenbacher,et al.  Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems , 2011 .

[17]  M. Hanke A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems , 1997 .

[18]  Martin Burger,et al.  Numerical Approximation of an SQP-Type Method for Parameter Identification , 2002, SIAM J. Numer. Anal..

[19]  Thorsten Hohage,et al.  Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data , 2011, Numerische Mathematik.

[20]  Barbara Kaltenbacher,et al.  Efficient computation of the Tikhonov regularization parameter by goal-oriented adaptive discretization , 2008 .

[21]  A. Neubauer,et al.  On convergence rates for the Iteratively regularized Gauss-Newton method , 1997 .

[22]  M. Burger,et al.  Iterative regularization of parameter identification problems by sequential quadratic programming methods , 2002 .