Fractional partial differential equation denoising models for texture image

[1]  N. Engheta On the role of fractional calculus in electromagnetic theory , 2016 .

[2]  A. Luo,et al.  Fractional Dynamics and Control , 2011 .

[3]  Jiliu Zhou,et al.  A novel approach for multi-scale texture segmentation based on fractional differential , 2011, Int. J. Comput. Math..

[4]  Zhou Ji-liu,et al.  Research on Application of Fractional Calculus , 2011 .

[5]  Yi-Fei Pu,et al.  Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement , 2010, IEEE Transactions on Image Processing.

[6]  Haixian Wang,et al.  Image Denoising Using Trivariate Shrinkage Filter in the Wavelet Domain and Joint Bilateral Filter in the Spatial Domain , 2009, IEEE Transactions on Image Processing.

[7]  Zhen Liu,et al.  An Improved LOT Model for Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[8]  Ming Zhang,et al.  Multiresolution Bilateral Filtering for Image Denoising , 2008, IEEE Transactions on Image Processing.

[9]  V. E. Tarasov Fractional Vector Calculus and Fractional Maxwell's Equations , 2008, 0907.2363.

[10]  Weixing Wang,et al.  Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation , 2008, Science in China Series F: Information Sciences.

[11]  James V. Lambers,et al.  Two New Nonlinear Nonlocal Diffusions for Noise Reduction , 2008, Journal of Mathematical Imaging and Vision.

[12]  Jean-Michel Morel,et al.  Nonlocal Image and Movie Denoising , 2008, International Journal of Computer Vision.

[13]  Brendt Wohlberg,et al.  An Iteratively Reweighted Norm Algorithm for Minimization of Total Variation Functionals , 2007, IEEE Signal Processing Letters.

[14]  Jian Bai,et al.  Fractional-Order Anisotropic Diffusion for Image Denoising , 2007, IEEE Transactions on Image Processing.

[15]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[16]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[17]  Chaomin Shen,et al.  Image restoration combining a total variational filter and a fourth-order filter , 2007, J. Vis. Commun. Image Represent..

[18]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[19]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part II: Levelable Functions, Convex Priors and Non-Convex Cases , 2006, Journal of Mathematical Imaging and Vision.

[20]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[21]  Yehoshua Y. Zeevi,et al.  Estimation of optimal PDE-based denoising in the SNR sense , 2006, IEEE Transactions on Image Processing.

[22]  Tony F. Chan,et al.  Scale Recognition, Regularization Parameter Selection, and Meyer's G Norm in Total Variation Regularization , 2006, Multiscale Model. Simul..

[23]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[24]  Pu Yi-Fei,et al.  Implement Any Fractional Order Neural-type Pulse Oscillator with Net-grid Type Analog Fractance Circuit , 2006 .

[25]  Yifei Pu,et al.  Fractional Calculus Approach to Texture of Digital Image , 2006, 2006 8th international Conference on Signal Processing.

[26]  Nikos Paragios,et al.  Handbook of Mathematical Models in Computer Vision , 2005 .

[27]  Yuan Xiao,et al.  Structuring analog fractance circuit for 1/2 order fractional calculus , 2005, 2005 6th International Conference on ASIC.

[28]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[29]  Atsushi Imiya,et al.  Regularity and Scale-Space Properties of Fractional High Order Linear Filtering , 2005, Scale-Space.

[30]  Jan A Snyman,et al.  Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .

[31]  Zhou Ji-liu,et al.  Five Numerical Algorithms of Fractional Calculus Applied in Modern Signal Analyzing and Processing , 2005 .

[32]  Xue-Cheng Tai,et al.  Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional , 2005, International Journal of Computer Vision.

[33]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[34]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[35]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[36]  Jérôme Darbon,et al.  Exact Optimization of Discrete Constrained Total Variation Minimization Problems , 2004, IWCIA.

[37]  S. Osher,et al.  Decomposition of images by the anisotropic Rudin‐Osher‐Fatemi model , 2004 .

[38]  Xue-Cheng Tai,et al.  Noise removal using smoothed normals and surface fitting , 2004, IEEE Transactions on Image Processing.

[39]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Luc Florack,et al.  On the Axioms of Scale Space Theory , 2004, Journal of Mathematical Imaging and Vision.

[41]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[42]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[43]  Pavel Mrázek,et al.  Selection of Optimal Stopping Time for Nonlinear Diffusion Filtering , 2001, International Journal of Computer Vision.

[44]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[45]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[46]  Andy M. Yip,et al.  Recent Developments in Total Variation Image Restoration , 2004 .

[47]  Alfred O. Hero,et al.  A Fast Spectral Method for Active 3D Shape Reconstruction , 2004, Journal of Mathematical Imaging and Vision.

[48]  Zhou Wang,et al.  Image Quality Assessment: From Error Measurement to Structural Similarity , 2004 .

[49]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[50]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[51]  Alain Oustaloup,et al.  Fractional differentiation for edge detection , 2003, Signal Process..

[52]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[53]  T. D. Bui,et al.  Multiwavelets denoising using neighboring coefficients , 2003, IEEE Signal Processing Letters.

[54]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[55]  M. Felsberg,et al.  α Scale Spaces on a Bounded Domain , 2003 .

[56]  N. Sochen,et al.  Texture Preserving Variational Denoising Using an Adaptive Fidelity Term , 2003 .

[57]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[58]  S. Manabe A Suggestion of Fractional-Order Controller for Flexible Spacecraft Attitude Control , 2002 .

[59]  Ingo Schäfer,et al.  Fractional Calculus via Functional Calculus: Theory and Applications , 2002 .

[60]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[61]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[62]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[63]  Peyman Milanfar,et al.  Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement , 2001, IEEE Trans. Image Process..

[64]  Rachid Harba,et al.  nth-order fractional Brownian motion and fractional Gaussian noises , 2001, IEEE Trans. Signal Process..

[65]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Process. Lett..

[66]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Processing Letters.

[67]  Mostafa Kaveh,et al.  Fourth-order partial differential equations for noise removal , 2000, IEEE Trans. Image Process..

[68]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[69]  Thierry Blu,et al.  Fractional Splines and Wavelets , 2000, SIAM Rev..

[70]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[71]  Stan Z. Li,et al.  Close-Form Solution and Parameter Selection for Convex Minimization-Based Edge-Preserving Smoothing , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[73]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[74]  Brett Ninness,et al.  Estimation of 1/f Noise , 1998, IEEE Trans. Inf. Theory.

[75]  Chak-Kuen Wong,et al.  Total variation image restoration: numerical methods and extensions , 1997, Proceedings of International Conference on Image Processing.

[76]  Tony F. Chan,et al.  Extensions to total variation denoising , 1997, Optics & Photonics.

[77]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[78]  N. Engheia On the role of fractional calculus in electromagnetic theory , 1997 .

[79]  Shyang Chang,et al.  Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification , 1997, IEEE Trans. Image Process..

[80]  Stefano Alliney,et al.  A property of the minimum vectors of a regularizing functional defined by means of the absolute norm , 1997, IEEE Trans. Signal Process..

[81]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[82]  Hari M. Srivastava,et al.  Fractional calculus operators and their applications involving power functions and summation of series , 1997 .

[83]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .

[84]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[85]  N. Engheta On fractional calculus and fractional multipoles in electromagnetism , 1996 .

[86]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[87]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[88]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[89]  Marek W. Michalski Derivatives of noninteger order and their applications , 1993 .

[90]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[91]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[92]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[93]  D. M. Titterington,et al.  A Study of Methods of Choosing the Smoothing Parameter in Image Restoration by Regularization , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[94]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[95]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[96]  E. R. Love,et al.  Fractional Derivatives of Imaginary Order , 1971 .

[97]  M. Evans Munroe,et al.  Introduction to Measure and Integration , 1953 .