Distance-Two Coloring of Barnette Graphs
暂无分享,去创建一个
[1] Tomás Feder,et al. On Barnette's conjecture , 2006, Electron. Colloquium Comput. Complex..
[2] W. T. Tutte. On Hamiltonian Circuits , 1946 .
[3] Brendan D. McKay,et al. The smallest non-hamiltonian 3-connected cubic planar graphs have 38 vertices , 1988, J. Comb. Theory, Ser. B.
[4] František Kardoš. A Computer-Assisted Proof of the Barnette-Goodey Conjecture: Not Only Fullerene Graphs Are Hamiltonian , 2020, SIAM J. Discret. Math..
[5] Oleg V. Borodin,et al. 2-distance 4-colorability of Planar Subcubic Graphs with Girth at Least 22 , 2012, Discuss. Math. Graph Theory.
[6] Xiaoyun Lu,et al. A note on 3-connected cubic planar graphs , 2010, Discret. Math..
[7] Stephen G. Hartke,et al. The chromatic number of the square of subcubic planar graphs , 2016, 1604.06504.
[8] David W. Barnette. On generating planar graphs , 1974, Discret. Math..
[9] S. M. DE BACKER. The Four-Colour Problem , 1944, Nature.
[10] Frédéric Havet. Choosability of the square of planar subcubic graphs with large girth , 2009, Discret. Math..
[11] Pavol Hell,et al. Distance-Two Colorings of Barnette Graphs , 2018, ArXiv.
[12] Pinar Heggernes,et al. Partitioning Graphs into Generalized Dominating Sets , 1998, Nord. J. Comput..
[13] Brendan D. McKay,et al. Nonhamiltonian 3-Connected Cubic Planar Graphs , 2000, SIAM J. Discret. Math..
[14] Jean-Sébastien Sereni,et al. Long cycles in fullerene graphs , 2008, 0801.3854.
[15] P. R. Goodey,et al. A class of Hamiltonian polytopes , 1977, J. Graph Theory.
[16] David S. Johnson,et al. The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..
[17] G. Wegner. Graphs with given diameter and a coloring problem , 1977 .
[18] Carsten Thomassen,et al. The square of a planar cubic graph is 7-colorable , 2017, J. Comb. Theory B.
[19] P. Goodey. Hamiltonian circuits in polytopes with even sided faces , 1975 .
[20] Oleg V. Borodin,et al. Colorings of plane graphs: A survey , 2013, Discret. Math..