Interface engineering of ultrathin Cu(In,Ga)Se2 solar cells on reflective back contacts

[1]  L. Stolt,et al.  Enhanced back reflectance and quantum efficiency in Cu(In,Ga)Se2 thin film solar cells with a ZrN back reflector , 2004 .

[2]  M. Jubault,et al.  Development of reflective back contacts for high-efficiency ultrathin Cu(In,Ga)Se2 solar cells , 2019, Thin Solid Films.

[3]  Jean-François Guillemoles,et al.  Ga gradients in Cu(In,Ga)Se2: Formation, characterization, and consequences , 2014 .

[4]  M. Green,et al.  Physics of the temperature coefficients of solar cells , 2015 .

[5]  M. Jubault,et al.  Ultrathin Cu(In,Ga)Se2 based solar cells , 2017 .

[6]  J. Jeong,et al.  Control of Structural and Electrical Properties of Indium Tin Oxide (ITO)/Cu(In,Ga)Se2 Interface for Transparent Back-Contact Applications , 2019, The Journal of Physical Chemistry C.

[7]  Michael Woodhouse,et al.  An analysis of glass–glass CIGS manufacturing costs , 2016 .

[8]  E. Fortunato,et al.  Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer , 2018 .

[9]  D. Lincot,et al.  Optical properties of ultrathin CIGS films studied by spectroscopic ellipsometry assisted by chemical engineering , 2017 .

[10]  S. Nishiwaki,et al.  Novel back contact reflector for high efficiency and double‐graded Cu(In,Ga)Se2 thin‐film solar cells , 2018, Progress in Photovoltaics: Research and Applications.

[11]  Gregor E. Morfill,et al.  Synthesis of diamond fine particles on levitated seed particles in a rf CH4/H2 plasma chamber equipped with a hot filament , 2012 .

[12]  Thomas Unold,et al.  Cu(In,Ga)Se2 superstrate solar cells: prospects and limitations , 2015 .

[13]  L. Stolt,et al.  On the beneficial effect of Al2O3 front contact passivation in Cu(In,Ga)Se2 solar cells , 2017 .

[14]  H. Zogg,et al.  Ga2O3 segregation in Cu(In, Ga)Se2/ZnO superstrate solar cells and its impact on their photovoltaic properties , 2002 .

[15]  Kihwan Kim,et al.  Improved Performance of Ultrathin Cu(InGa)Se$_{\bf 2}$ Solar Cells With a Backwall Superstrate Configuration , 2014, IEEE Journal of Photovoltaics.

[16]  T. Nakada,et al.  Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts , 2004 .

[17]  D. Lincot,et al.  Using radiative transfer equation to model absorption by thin Cu(In,Ga)Se2 solar cells with Lambertian back reflector. , 2013, Optics express.

[18]  Marika Edoff,et al.  Technological and economical aspects on the influence of reduced Cu(In,Ga)Se2 thickness and Ga grading for co-evaporated Cu(In,Ga)Se2 modules , 2011 .

[19]  T. Nakada,et al.  Microstructural and diffusion properties of CIGS thin film solar cells fabricated using transparent conducting oxide back contacts , 2005 .

[20]  Jean-Jacques Greffet,et al.  Optical approaches to improve the photocurrent generation in Cu(In,Ga)Se2 solar cells with absorber thicknesses down to 0.5 μm , 2012 .

[21]  Marika Edoff,et al.  Effect of different Na supply methods on thin Cu(In,Ga)Se2 solar cells with Al2O3 rear passivation layers , 2018, Solar Energy Materials and Solar Cells.

[22]  Daniel Lincot,et al.  Towards ultrathin copper indium gallium diselenide solar cells: proof of concept study by chemical etching and gold back contact engineering , 2012 .

[23]  Martina Schmid,et al.  Optoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts , 2017 .

[24]  E. F. Osborn,et al.  The System Alumina‐Gallia‐Water , 1952 .

[25]  L. Mansfield,et al.  Efficiency increased to 15.2% for ultra‐thin Cu(In,Ga)Se2 solar cells , 2018, Progress in Photovoltaics: Research and Applications.

[26]  S. Nishiwaki,et al.  Advanced Alkali Treatments for High‐Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates , 2019, Advanced Energy Materials.

[27]  J. Speck,et al.  Structural and electronic properties of Ga2O3-Al2O3 alloys , 2018, Applied Physics Letters.

[28]  Nan Wei,et al.  Tuning Geometry of SWCNTs by CO2 in Floating Catalyst CVD for High‐Performance Transparent Conductive Films , 2018, Advanced Materials Interfaces.

[29]  P. Lalanne,et al.  Light Trapping in Ultrathin CIGS Solar Cells with Nanostructured Back Mirrors , 2017, IEEE Journal of Photovoltaics.

[30]  Motoshi Nakamura,et al.  Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35% , 2019, IEEE Journal of Photovoltaics.

[31]  Christophe Dupuis,et al.  A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror , 2019, Nature Energy.

[32]  Martina Schmid,et al.  Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. , 2015, ACS nano.

[33]  J. Larsen,et al.  Formation of Ga2O3 barrier layer in Cu (InGa) Se2 superstrate devices with ZnO buffer layer , 2013 .

[34]  Jürgen H. Werner,et al.  Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells , 2003 .

[35]  O. Donzel‐Gargand,et al.  Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cells , 2019, IEEE Journal of Photovoltaics.

[36]  M. Jubault,et al.  Reflective Back Contacts for Ultrathin Cu(In,Ga)Se2-Based Solar Cells , 2020, IEEE Journal of Photovoltaics.

[37]  Marika Edoff,et al.  Bifacial Cu(In,Ga)Se2 solar cells using hydrogen‐doped In2O3 films as a transparent back contact , 2018, Progress in Photovoltaics: Research and Applications.

[38]  Ting-Shiuan Jiang,et al.  Electrical impact of MoSe2 on CIGS thin-film solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[39]  Shanhui Fan,et al.  A Comprehensive Photonic Approach for Solar Cell Cooling , 2017 .