Application of Optimal Input Synthesis to Aircraft Parameter Identification

The Frequency Domain Input Synthesis procedure is used in identifying the stability and control derivatives of an aircraft. By using a frequency-domain approach, one can handle criteria that are not easily handled by the time-domain approaches. Numerical results are presented for optimal elevator deflections to estimate the longitudinal stability and control derivatives subject to root-mean square constraints on the input. The applicability of the steady state optimal inputs to finite duration flight testing is investigated. The steady state approximation of frequency-domain synthesis is good for data lengths greater than two time cycles for the short period mode of the aircraft longitudinal motions. Phase relationships between different frequency components become important for shorter data lengths. The frequency domain inputs are shown to be much better than the conventional doublet inputs.