Approximating the First Passage Time Density of Diffusion Processes with State-Dependent Jumps

We study the problem of the first passage time through a constant boundary for a jump diffusion process whose infinitesimal generator is a nonlocal Jacobi operator. Due to the lack of analytical results, we address the problem using a discretization scheme for simulating the trajectories of jump diffusion processes with state-dependent jumps in both frequency and amplitude. We obtain numerical approximations on their first passage time probability density functions and results for the qualitative behavior of other statistics of this random variable. Finally, we provide two examples of application of the method for different choices of the distribution involved in the mechanism of generation of the jumps.

[1]  Zhimin Zhang,et al.  Some new infinite series expansions for the first passage time densities in a jump diffusion model with phase-type jumps , 2022, Appl. Math. Comput..

[2]  E. Buckwar,et al.  Qualitative properties of different numerical methods for the inhomogeneous geometric Brownian motion , 2021, J. Comput. Appl. Math..

[3]  Nicolas Massin,et al.  Exact simulation of the first passage time through a given level of jump diffusions , 2021, Math. Comput. Simul..

[4]  M. Lefebvre First-passage problems for diffusion processes with state-dependent jumps , 2020, Communications in Statistics - Theory and Methods.

[5]  M. Lefebvre The ruin problem for a Wiener process with state-dependent jumps , 2020 .

[6]  R. Brignone,et al.  Asian options pricing in Hawkes-type jump-diffusion models , 2019, Annals of Finance.

[7]  Patrick Cheridito,et al.  On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity , 2019, Journal de l’École polytechnique — Mathématiques.

[8]  P. Lánský,et al.  The Jacobi diffusion process as a neuronal model. , 2018, Chaos.

[9]  Lucia Caramellino,et al.  Convergence Rate of Markov Chains and Hybrid Numerical Schemes to Jump-Diffusion with Application to the Bates Model , 2018, SIAM J. Numer. Anal..

[10]  Samuel Herrmann,et al.  Exact Simulation of the First-Passage Time of Diffusions , 2017, Journal of Scientific Computing.

[11]  Virginia Giorno,et al.  Estimating a non-homogeneous Gompertz process with jumps as model of tumor dynamics , 2017, Comput. Stat. Data Anal..

[12]  P. Patie,et al.  Bernstein-gamma functions and exponential functionals of Levy Processes , 2016, 1604.05960.

[13]  A. Buonocore,et al.  Closed-form solutions for the first-passage-time problem and neuronal modeling , 2015 .

[14]  Virginia Giorno,et al.  A Continuous-Time Ehrenfest Model with Catastrophes and Its Jump-Diffusion Approximation , 2015, Journal of Statistical Physics.

[15]  Paul A. Jenkins,et al.  EXACT SIMULATION OF THE WRIGHT – FISHER DIFFUSION , 2017 .

[16]  Sidney Redner,et al.  First-passage phenomena and their applications , 2014 .

[17]  Laura Sacerdote,et al.  Cooperative behavior in a jump diffusion model for a simple network of spiking neurons. , 2013, Mathematical biosciences and engineering : MBE.

[18]  K. Burrage,et al.  A boundary preserving numerical algorithm for the Wright-Fisher model with mutation , 2012 .

[19]  Gareth O. Roberts,et al.  Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications , 2011 .

[20]  Patrick Jahn,et al.  Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process , 2011, Journal of Computational Neuroscience.

[21]  Mario Abundo,et al.  On the First Hitting Time of a One-dimensional Diffusion and a Compound Poisson Process , 2010 .

[22]  René L. Schilling,et al.  Bernstein Functions: Theory and Applications , 2010 .

[23]  E. Pirozzi,et al.  ASYMPTOTICS AND EVALUATIONS OF FPT DENSITIES THROUGH VARYING BOUNDARIES FOR GAUSS-MARKOV PROCESSES , 2008 .

[24]  G. Roberts,et al.  Exact simulation of diffusions , 2005, math/0602523.

[25]  Amir F. Atiya,et al.  Efficient Estimation of First Passage Time Density Function for Jump-Diffusion Processes , 2005, SIAM J. Sci. Comput..

[26]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.

[27]  L. Sacerdote,et al.  Noise induced phenomena in jump diffusion models for single neuron spike activity , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[28]  Paul Glasserman,et al.  Convergence of a discretization scheme for jump-diffusion processes with state–dependent intensities , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[30]  Patrizia Tavella,et al.  A mathematical model for the atomic clock error in case of jumps , 2003, 1506.01080.

[31]  Hui Wang,et al.  First passage times of a jump diffusion process , 2003, Advances in Applied Probability.

[32]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[33]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[34]  Virginia Giorno,et al.  AN OUTLINE OF THEORETICAL AND ALGORITHMIC APPROACHES TO FIRST PASSAGE TIME PROBLEMS WITH APPLICATIONS TO BIOLOGICAL MODELING , 1999 .

[35]  Virginia Giorno,et al.  ON THE ASYMPTOTIC BEHAVIOUR OF FIRST- PASSAGE-TIME DENSITIES FOR ONE-DIMENSIONAL DIFFUSION PROCESSES AND VARYING BOUNDARIES , 1990 .

[36]  A. G. Nobile,et al.  Exponential trends of Ornstein–Uhlenbeck first-passage-time densities , 1985, Journal of Applied Probability.

[37]  Richard F. Bass,et al.  Adding and subtracting jumps from Markov processes , 1979 .

[38]  Abundo On first-passage-times for one-dimensional jump-diffusion processes. , 2000 .

[39]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .