Bayesian modeling of measurement error in predictor variables using item response theory

It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between the latent variables and dichotomous observed variables, which may be responses to tests or questionnaires. It will be shown that the multilevel model with measurement error in the observed predictor variables can be estimated in a Bayesian framework using Gibbs sampling. In this article, handling measurement error via the normal ogive model is compared with alternative approaches using the classical true score model. Examples using real data are given.

[1]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[2]  Gerardus Johannes Andre Fox Multilevel IRT: a Bayesian perspective on estimating parameters and testing statistical hypotheses , 2001 .

[3]  S. R. Searle Linear Models , 1971 .

[4]  Jan de Leeuw,et al.  Random Coefficient Models for Multilevel Analysis , 1986 .

[5]  M. Seltzer,et al.  Sensitivity Analysis for Fixed Effects in the Hierarchical Model: A Gibbs Sampling Approach , 1993 .

[6]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[7]  Roderick P. McDonald,et al.  Normal-Ogive Multidimensional Model , 1997 .

[8]  Walter R. Gilks,et al.  Strategies for improving MCMC , 1995 .

[9]  A. Béguin,et al.  MCMC estimation and some model-fit analysis of multidimensional IRT models , 2001 .

[10]  Roderick P. McDonald,et al.  Linear Versus Models in Item Response Theory , 1982 .

[11]  Felix Famoye,et al.  Improving Efficiency by Shrinkage , 1999, Technometrics.

[12]  G. Roberts,et al.  Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .

[13]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[14]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[15]  Jim Albert,et al.  Ordinal Data Modeling , 2000 .

[16]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[17]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[18]  Kenneth A. Bollen,et al.  Structural Equations with Latent Variables , 1989 .

[19]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[20]  S. Raudenbush Educational Applications of Hierarchical Linear Models: A Review , 1988 .

[21]  H. Goldstein Multilevel Statistical Models , 2006 .

[22]  R. Darrell Bock,et al.  Multiple Group IRT , 1997 .

[23]  J. Fox,et al.  Bayesian estimation of a multilevel IRT model using gibbs sampling , 2001 .

[24]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[25]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[26]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[27]  A. Béguin,et al.  MCMC estimation of multidimensional IRT models , 1998 .

[28]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Willem J. van der Linden,et al.  Optimal Assembly of Psychological and Educational Tests , 1998 .

[30]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[31]  Brian W. Junker,et al.  Applications and Extensions of MCMC in IRT: Multiple Item Types, Missing Data, and Rated Responses , 1999 .

[32]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[33]  L. Mark Berliner,et al.  Subsampling the Gibbs Sampler , 1994 .

[34]  A. Béguin,et al.  Robustness of equating high-stakes tests. , 2000 .

[35]  Wing Hung Wong,et al.  Bayesian Analysis in Applications of Hierarchical Models: Issues and Methods , 1996 .

[36]  R. P. McDonald,et al.  Nonlinear factor analysis. , 1967 .

[37]  T. Cook,et al.  Quasi-experimentation: Design & analysis issues for field settings , 1979 .

[38]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[39]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[40]  Herbert Hoijtink,et al.  On person parameter estimation in the dichotomous Rasch model , 1995 .

[41]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[42]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[43]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[44]  B. Muthén Latent variable modeling in heterogeneous populations , 1989 .

[45]  Yuk Fai Cheong,et al.  HLM 6: Hierarchical Linear and Nonlinear Modeling , 2000 .

[46]  J. Albert Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling , 1992 .