Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system

This paper deals with the derivation and analysis of the the Hall Magneto-Hydrodynamic equations. We first provide a derivation of this system from a two-fluids Euler-Maxwell system for electrons and ions, through a set of scaling limits. We also propose a kinetic formulation for the Hall-MHD equations which contains as fluid closure different variants of the Hall-MHD model. Then, we prove the existence of global weak solutions for the incompressible viscous resistive Hall-MHD model. We use the particular structure of the Hall term which has zero contribution to the energy identity. Finally, we discuss particular solutions in the form of axisymmetric purely swirling magnetic fields and propose some regularization of the Hall equation.

[1]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[2]  Pierre Degond,et al.  Transport coefficients of plasmas and disparate mass binary gases , 1996 .

[3]  Douglas S. Harned,et al.  Accurate semi-implicit treatment of the hall effect in magnetohydrodynamic computations , 1989 .

[4]  T. Forbes Magnetic reconnection in solar flares , 2016 .

[5]  L. Rudakov,et al.  Hall Magnetohydrodynamics of Reversed Field Current Layers , 2004 .

[6]  R. Grauer,et al.  Bifurcation analysis of magnetic reconnection in Hall-MHD-systems , 2005 .

[7]  Rainer Grauer,et al.  Axisymmetric Flows in Hall-MHD: A Tendency Towards Finite-Time Singularity Formation , 2005 .

[8]  Petr Hellinger,et al.  A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma , 2007, J. Comput. Phys..

[9]  Rainer Grauer,et al.  A semi-implicit Hall-MHD solver using whistler wave preconditioning , 2007, Comput. Phys. Commun..

[10]  S. Mahajan,et al.  Exact solution of the incompressible Hall magnetohydrodynamics , 2005 .

[11]  B. Cassany,et al.  Analysis of the operating regimes of microsecond‐conduction‐time plasma opening switches , 1995 .

[12]  P. Degond,et al.  Simulation of non equilibrium plasmas with a numerical noise reduced particle in cell method , 2011 .

[13]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[14]  J. Dawson,et al.  A discrete model for MHD incorporating the Hall term , 1993 .

[15]  D. A. Knoll,et al.  A 2D high-ß Hall MHD implicit nonlinear solver , 2003 .

[16]  Jian-Guo Liu,et al.  Characterization and Regularity for Axisymmetric Solenoidal Vector Fields with Application to Navier-Stokes Equation , 2009, SIAM J. Math. Anal..

[17]  S. I. Braginskii Transport Processes in a Plasma , 1965 .

[18]  J. Roquejoffre,et al.  A nonlinear oblique derivative boundary value problem for the heat equation Part 1: Basic results , 1999 .

[19]  Pierre Degond,et al.  Asymptotic Continuum Models for Plasmas and Disparate Mass Gaseous Binary Mixtures , 2007 .

[20]  L. Chacón,et al.  Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics. , 2008, Physical review letters.

[21]  J. L. Lions,et al.  Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .