Absolute Equation-of-State Measurement for Polystyrene from 25 to 60 Mbar Using a Spherically Converging Shock Wave.

We have developed an experimental platform for the National Ignition Facility that uses spherically converging shock waves for absolute equation-of-state (EOS) measurements along the principal Hugoniot. In this Letter, we present one indirect-drive implosion experiment with a polystyrene sample that employs radiographic compression measurements over a range of shock pressures reaching up to 60 Mbar (6 TPa). This significantly exceeds previously published results obtained on the Nova laser [R. Cauble et al., Phys. Rev. Lett. 80, 1248 (1998)PRLTAO0031-900710.1103/PhysRevLett.80.1248] at a strongly improved precision, allowing us to discriminate between different EOS models. We find excellent agreement with Kohn-Sham density-functional-theory-based molecular dynamics simulations.

[1]  Roger W. Falcone,et al.  Shock Hugoniot measurements of CH at Gbar pressures at the NIF , 2013 .

[2]  L. Stixrude Structure of iron to 1 Gbar and 40, 000 K. , 2012, Physical review letters.

[3]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[4]  Graeme Ackland,et al.  MASS–RADIUS RELATIONSHIPS FOR EXOPLANETS , 2010, 1001.4851.

[5]  Gilbert W. Collins,et al.  GIGABAR MATERIAL PROPERTIES EXPERIMENTS ON NIF AND OMEGA , 2011 .

[6]  A Pak,et al.  Observation of a reflected shock in an indirectly driven spherical implosion at the national ignition facility. , 2014, Physical review letters.

[7]  Gilbert W. Collins,et al.  Equation of state of CH1.36: First-principles molecular dynamics simulations and shock-and-release wave speed measurements , 2012 .

[8]  A. Sunahara,et al.  Flash Kα radiography of laser-driven solid sphere compression for fast ignition , 2016 .

[9]  L. Divol,et al.  Observations of continuum depression in warm dense matter with x-ray Thomson scattering. , 2013, Physical review letters.

[10]  D. T. Michel,et al.  Gigabar spherical shock generation on the OMEGA laser. , 2015, Physical review letters.

[11]  H. J. Lee,et al.  Direct measurements of the ionization potential depression in a dense plasma. , 2012, Physical review letters.

[12]  G. Alagic,et al.  #p , 2019, Quantum Inf. Comput..

[13]  Gilbert W. Collins,et al.  Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography. , 2018, The Review of scientific instruments.

[14]  S. Kulkarni,et al.  Discovery of a cool brown dwarf , 1995, Nature.

[15]  Sonnad,et al.  Purgatorio—a new implementation of the Inferno algorithm , 2005 .

[16]  M. Mcpherson,et al.  Introduction to fluid mechanics , 1997 .

[17]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[18]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  B. M. Fulk MATH , 1992 .

[20]  T. Boehly,et al.  Properties of warm dense polystyrene plasmas along the principal Hugoniot. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Y. P. Opachich,et al.  Backlighter development at the National Ignition Facility (NIF). Zinc to Zirconium , 2013 .

[22]  Robert L. Kauffman,et al.  Dante soft x-ray power diagnostic for National Ignition Facility , 2004 .

[23]  B. Militzer,et al.  First-principles equation of state and shock compression predictions of warm dense hydrocarbons. , 2017, Physical review. E.

[24]  D G Hicks,et al.  High performance imaging streak camera for the National Ignition Facility. , 2012, The Review of scientific instruments.

[25]  Xiuguang Huang,et al.  Measuring high pressure equation of state of polystyrene using laser driven shock wave , 2015 .

[26]  Gilbert W. Collins,et al.  Probing matter at Gbar pressures at the NIF , 2014 .

[27]  K. Shimizu,et al.  Shock Hugoniot and temperature data for polystyrene obtained with quartz standard , 2009 .

[28]  I. Shparlinski,et al.  Pseudoprime reductions of elliptic curves , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  D. A. Callahan,et al.  Fuel gain exceeding unity in an inertially confined fusion implosion , 2014, Nature.

[30]  Gilbert W. Collins,et al.  ABSOLUTE EQUATION-OF-STATE DATA IN THE 10-40 MBAR (1-4 TPA) REGIME , 1998 .

[31]  D. T. Michel,et al.  Spherical strong-shock generation for shock-ignition inertial fusiona) , 2014 .

[32]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[33]  Jon H. Eggert,et al.  Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al , 2005 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  B. Militzer,et al.  A multiphase equation of state for carbon addressing high pressures and temperatures , 2013, 1311.4577.

[36]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[37]  Elisabetta Pierazzo,et al.  The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary , 2010, Science.

[38]  Kenneth M. Hanson,et al.  AN INTERACTIVE TOOL FOR BAYESIAN INFERENCE , 1995 .

[39]  Edward I. Moses,et al.  The National Ignition Facility: enabling fusion ignition for the 21st century , 2004 .

[40]  W. Nellis,et al.  Shock compression of aluminum, copper, and tantalum , 1981 .

[41]  L. J. Atherton,et al.  Implosion dynamics measurements at the National Ignition Facility , 2012 .

[42]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[43]  V N Goncharov,et al.  First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  O. Landen,et al.  X-ray driven implosions at ignition relevant velocities on the National Ignition Facilitya) , 2013 .

[45]  Gilbert W. Collins,et al.  X-ray scattering measurements on imploding CH spheres at the National Ignition Facility. , 2016, Physical review. E.

[46]  M. Murakami,et al.  Stability of spherical converging shock wave , 2015 .

[47]  M. A. Barrios,et al.  High-precision measurements of the equation of state of hydrocarbons at 1-10 Mbar using laser-driven shock waves , 2010 .

[48]  M. Desjarlais,et al.  Adiabatic release measurements inα-quartz between 300 and 1200 GPa: Characterization ofα-quartz as a shock standard in the multimegabar regime , 2013 .

[49]  D. Liberman Self-consistent field model for condensed matter , 1979 .