Size-frequency distributions of planetary impact craters and asteroids

The size-frequency distributions (SFD) for projectiles which formed craters on terrestrial planets and asteroids Gaspra, Ida, and Mathilde are compared using modern cratering scaling laws. The result shows the relative stability of these distributions during the past 3.7 Gy (Orientale basin and younger formations). The derived projectile size-frequency distribution is compared with the size-frequency distribution of main-belt asteroids. The recent Spacewatch data demonstrate the spectacular similarity of the size distribution of asteroids with diameters larger than 1 km and the population of crater-forming projectiles derived from the cratering data. Consequently one can suppose that the efficiency of the new projectile delivery to planetary crossing orbits does not depend on asteroid size. The migration of large main belt bodies to Mars-crossing orbits or to resonances seems to play an important role in the generation of planet-crossing impactors.

[1]  O. Popova,et al.  Assessment of Kinetic Energy of Meteoroids Detected by Satellite-Based Light Sensors☆ , 1997 .

[2]  H. Jay Melosh,et al.  Acoustic fluidization: A new geologic process? , 1979 .

[3]  William K. Hartmann,et al.  Planetary cratering 1. The question of multiple impactor populations: Lunar evidence , 1995 .

[4]  William K. Hartmann,et al.  Relative crater production rates on planets , 1977 .

[5]  G. Neukum,et al.  Cratering on Gaspra , 1993 .

[6]  D. Davis,et al.  Collisional history of asteroids: Evidence from Vesta and the Hirayama families , 1985 .

[7]  Paolo Farinella,et al.  Asteroid collisional evolution: results from current scaling algorithms , 1994 .

[8]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[9]  W. McKinnon An investigation into the role of plastic failure in crater modification , 1978 .

[10]  A. McEwen,et al.  First Images of Asteroid 243 Ida , 1994, Science.

[11]  C. Chapman,et al.  Distribution of taxonomic classes and the compositional structure of the asteroid belt. , 1989 .

[12]  Robert Jedicke,et al.  Collisional Models and Scaling Laws: A New Interpretation of the Shape of the Main-Belt Asteroid Size Distribution☆ , 1998 .

[13]  A. McEwen,et al.  Galileo Encounter with 951 Gaspra: First Pictures of an Asteroid , 1992, Science.

[14]  S. Love,et al.  Catastrophic Impacts on Gravity Dominated Asteroids , 1996 .

[15]  S. Croft Scaling of Complex Craters , 1985 .

[16]  M. S. Matthews,et al.  Hazards Due to Comets and Asteroids , 1992 .

[17]  E. Shoemaker,et al.  Cratering Time Scales for the Galilean Satellites , 1982 .

[18]  A. McEwen,et al.  The Phanerozoic Impact Cratering Rate: Evidence from the Farside of the Moon , 1997 .

[19]  Richard J. Pike,et al.  Size-dependence in the shape of fresh impact craters on the moon , 1977 .

[20]  Kevin R. Housen,et al.  Some recent advances in the scaling of impact and explosion cratering , 1987 .

[21]  H. Melosh A schematic model of crater modification by gravity , 1982 .

[22]  Gerhard Neukum,et al.  Cratering on Ida , 1996 .

[23]  P. Farinella,et al.  Fragment ejection velocities and the collisional evolution of asteroids , 1994 .

[24]  D. Gault,et al.  Experimental studies of oblique impact. , 1978 .

[25]  David Morrison,et al.  Satellites of Jupiter , 1982 .

[26]  B. Ivanov,et al.  Block Oscillation Model for Impact Crater Collapse , 1997 .

[27]  Alberto Cellino,et al.  The size distribution of main-belt asteroids from IRAS data , 1991 .

[28]  R. Sullivan,et al.  Mechanical and geological effects of impact cratering on Ida , 1996 .

[29]  I. Doghri Mechanics of Deformable Solids , 2000 .

[30]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[31]  Boris A. Ivanov,et al.  IMPACT CRATER COLLAPSE , 1999 .

[32]  G. Neukum,et al.  The cratering record on Mercury and the origin of impacting objects , 1988 .

[33]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[34]  P. Farinella,et al.  Wavy size distributions for collisional systems with a small-size cutoff , 1994 .

[35]  Elisabetta Pierazzo,et al.  A Reevaluation of Impact Melt Production , 1997 .

[36]  Basaltic Volcanism Study Basaltic volcanism on the terrestrial planets , 1981 .

[37]  R. M. Schmidt,et al.  Meteor Crater: Energy of formation - Implications of centrifuge scaling , 1980 .

[38]  A. Basilevsky,et al.  Atmospheric entry of large meteoroids: implication to Titan , 1997 .

[39]  Veverka,et al.  NEAR's flyby of 253 mathilde: images of a C asteroid , 1997, Science.

[40]  T. Gehrels,et al.  The Palomar-Leiden survey of faint minor planets , 1970 .

[41]  S. Runcorn Book Review: Impact and Explosion Cratering. Proceedings of the Symposium on Planetary Cratering Mechanics. Pergamon Press, 1977, 1299 pp., US $150.00, £98.00, ISBN 0-08-022050-9 , 1984 .

[42]  D. L. Rabinowitz,et al.  Are Main-Belt Asteroids a Sufficient Source for the Earth-Approaching Asteroids? , 1997 .

[43]  H. Melosh,et al.  ASTEROIDS : SHATTERED BUT NOT DISPERSED , 1997 .

[44]  R. Jedicke,et al.  The Orbital and Absolute Magnitude Distributions of Main Belt Asteroids , 1998 .

[45]  G. Hahn,et al.  Dynamics of planet-crossing asteroids: Classes of orbital behavior: Project SPACEGUARD , 1989 .

[46]  D. Roddy Pre-impact geologic conditions, physical properties, energy calculations, meteorite and initial crater dimensions and orientations of joints, faults and walls at Meteor Crater, Arizona , 1978 .

[47]  W. Hartmann Does crater “saturation equilibrium” occur in the solar system? , 1984 .

[48]  A. McEwen,et al.  Evidence for recent volcanism on Mars from crater counts , 1999, Nature.

[49]  G. Neukum,et al.  Impact Craters, NEA and Main Belt Asteroids: Size Frequency Distribution , 1999 .

[50]  Richard P. Binzel,et al.  Asteroid collisional history - Effects on sizes and spins , 1989 .

[51]  Farquhar,et al.  Estimating the mass of asteroid 253 mathilde from tracking data during the NEAR flyby , 1997, Science.

[52]  Richard J. Pike,et al.  Control of crater morphology by gravity and target type - Mars, earth, moon , 1980 .

[53]  J. B. Bryan,et al.  Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona , 1978 .

[54]  A. Basilevsky,et al.  Lunar craters evolution and meteoroidal flux in pre-mare and post-mare times , 1981 .

[55]  K. Holsapple,et al.  Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .

[56]  H. J. Moore,et al.  Standard techniques for presentation and analysis of crater size-frequency data , 1978 .

[57]  David L. Rabinowitz,et al.  The size distribution of the earth-approaching asteroids , 1993 .

[58]  H. Melosh,et al.  Impact Craters on Asteroids: Does Gravity or Strength Control Their Size? , 1996 .

[59]  Robert G. Strom,et al.  Origin and relative age of lunar and Mercurian intercrater plains , 1977 .

[60]  A. McEwen,et al.  Galileo observations of post-imbrium lunar craters during the first Eearth-Moon flyby , 1993 .

[61]  C. Chapman,et al.  Cratering of planetary satellites. , 1986 .