Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels.

Operating on Methane and Related Fuels Wei Wang,† Chao Su,‡ Yuzhou Wu, Ran Ran,† and Zongping Shao*,† †State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009, People’s Republic of China ‡Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia

[1]  Catherine M. Grgicak,et al.  SOFC anodes for direct oxidation of hydrogen and methane fuels containing H2S , 2008 .

[2]  Akira Negishi,et al.  Dual fuel type solid oxide fuel cell using dimethyl ether and liquefied petroleum gas as fuels , 2012 .

[3]  Zongping Shao,et al.  Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating , 2011 .

[4]  Adesoji A. Adesina,et al.  Thermodynamic analysis of glycerol-steam reforming in the presence of CO2 or H2 as carbon gasifying agent , 2012 .

[5]  Suttichai Assabumrungrat,et al.  Steam reforming of ethanol with co-fed oxygen and hydrogen over Ni on high surface area ceria support , 2007 .

[6]  Xiaochuan Lu,et al.  Ni–Fe + SDC composite as anode material for intermediate temperature solid oxide fuel cell , 2007 .

[7]  Zongping Shao,et al.  Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction. , 2012, Physical chemistry chemical physics : PCCP.

[8]  J. Walmsley,et al.  Inactive aluminate spinels as precursors for design of CPO and reforming catalysts , 2010 .

[9]  J. Fierro,et al.  Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. , 2007, Chemical reviews.

[10]  Nigel P. Brandon,et al.  Methanol as a direct fuel in intermediate temperature (500–600∘C) solid oxide fuel cells with copper based anodes , 2005 .

[11]  Mogens Bjerg Mogensen,et al.  The Mechanism Behind Redox Instability of Anodes in High-Temperature SOFCs , 2005 .

[12]  C. Antonetti,et al.  An easy microwave-assisted process for the synthesis of nanostructured palladium catalysts and their use in the selective hydrogenation of cinnamaldehyde , 2010 .

[13]  Stephen J. Harris,et al.  Direct Solid Oxide Fuel Cell Operation Using a Dimethyl Ether/Air Fuel Mixture , 2005 .

[14]  Toshio Suzuki,et al.  Impact of Anode Microstructure on Solid Oxide Fuel Cells , 2009, Science.

[15]  Norbert H. Menzler,et al.  Durability of Ni anodes during reoxidation cycles , 2010 .

[16]  Ryan Clemmer,et al.  Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane , 2008 .

[17]  Mogens Bjerg Mogensen,et al.  Microstructural and chemical changes at the Ni/YSZ interface , 2001 .

[18]  Adolfo E. Castro Luna,et al.  Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst , 2008 .

[19]  Hengyong Xu,et al.  Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor , 2008 .

[20]  Zongping Shao,et al.  Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane , 2011 .

[21]  X. Verykios Catalytic dry reforming of natural gas for the production of chemicals and hydrogen , 2003 .

[22]  N. Sammes,et al.  A functional layer for direct use of hydrocarbon fuel in low temperature solid-oxide fuel cells , 2011 .

[23]  Kazunari Sasaki,et al.  Equilibria in Fuel Cell Gases II. The C-H-O Ternary Diagrams , 2003 .

[24]  Kazunari Sasaki,et al.  Direct-Alcohol SOFCs: Current-Voltage Characteristics and Fuel Gas Compositions , 2004 .

[25]  Hirofumi Sumi,et al.  Comparison Between Internal Steam and CO2 Reforming of Methane for Ni-YSZ and Ni-ScSZ SOFC Anodes , 2010 .

[26]  G. Meng,et al.  Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells , 2006 .

[27]  Zongping Shao,et al.  Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane , 2011 .

[28]  Michael D. Gross,et al.  A study of thermal stability and methane tolerance of Cu-based SOFC anodes with electrodeposited Co , 2007 .

[29]  Ryuji Kikuchi,et al.  Fuel flexibility in power generation by solid oxide fuel cells , 2002 .

[30]  Raymond J. Gorte,et al.  Cu-Co Bimetallic Anodes for Direct Utilization of Methane in SOFCs , 2005 .

[31]  J. Vohs,et al.  Determining the Ce2O2S–CeOx phase boundary for conditions relevant to adsorption and catalysis , 2003 .

[32]  V. Belyaev,et al.  Gas-phase electrocatalysis: methane oxidation to syngas in a solid oxide fuel cell reactor , 2000 .

[33]  J. Nørskov,et al.  Steam Reforming and Graphite Formation on Ni Catalysts , 2002 .

[34]  P. Strizhak,et al.  Activity and stability of Ni/Al2O3 catalysts in carbon dioxide conversion of methane as influenced by alkali metal oxide additives (K2O, Na2O, Li2O) , 2007 .

[35]  F. Doğan,et al.  Redox Stable Solid Oxide Fuel Cells with Ni-YSZ Cermet Anodes Prepared by Polymeric Precursor Infiltration , 2011 .

[36]  Hyun-Seog Roh,et al.  Catalytic investigation for Fischer: Tropsch synthesis from bio-mass derived syngas , 2004 .

[37]  G. Gauthier,et al.  Evidence of anti-coking behavior of La0.8Sr0.2Cr0.98Ru0.02O3 as potential anode material for Solid Oxide Fuel Cells directly fed under methane , 2012 .

[38]  Z. Wang,et al.  Regenerative Adsorption and Removal of H2S from Hot Fuel Gas Streams by Rare Earth Oxides , 2006, Science.

[39]  G. Guan,et al.  Rapid degradation phenomenon of NiCu–Ce0.8Gd0.2O1.9 anode at high p(H2O) in different concentrations of dry methane , 2011 .

[40]  Huaiyu Zhu,et al.  Iron incorporated Ni-ZrO2 catalysts for electric power generation from methane , 2012 .

[41]  Nobuyoshi Nakagawa,et al.  Catalytic activity of Ni–YSZ–CeO2 anode for the steam reforming of methane in a direct internal-reforming solid oxide fuel cell , 2001 .

[42]  K. Jun,et al.  Highly active and stable Ni/Ce-ZrO2 catalyst for H2 production from methane , 2002 .

[43]  R. B. Lima,et al.  Advanced Multi‐Fuelled Solid Oxide Fuel Cells (ASOFCs) Using Functional Nanocomposites for Polygeneration , 2011 .

[44]  Viral S. Mehta,et al.  Review and analysis of PEM fuel cell design and manufacturing , 2003 .

[45]  N. Xanthopoulos,et al.  Lanthanum Chromite Based Catalysts for Oxidation of Methane Directly on SOFC Anodes , 2001 .

[46]  Hongpeng He,et al.  Carbon deposition on Ni/YSZ composites exposed to humidified methane , 2007 .

[47]  John B. Goodenough,et al.  Alternative anode materials for solid oxide fuel cells , 2007 .

[48]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[49]  A. Kiennemann,et al.  Dry reforming of methane using Ni–Ce catalysts supported on a modified mineral clay , 2009 .

[50]  J. Zondlo,et al.  An H2S-Tolerant Ni-GDC Anode with a GDC Barrier Layer , 2011 .

[51]  Conversion of Syngas from Biomass in Solid Oxide Fuel Cells , 2006 .

[52]  Turgut M. Gür,et al.  Carbon monoxide-fueled solid oxide fuel cell , 2010 .

[53]  Mogens Bjerg Mogensen,et al.  High-temperature conversion of methane on a composite gadolinia-doped ceria–gold electrode , 1999 .

[54]  Zongping Shao,et al.  A comprehensive evaluation of a Ni-Al2O3 catalyst as a functional layer of solid-oxide fuel cell anode , 2010 .

[55]  S. Nam,et al.  Analysis of the regenerative H2S poisoning mechanism in Ce0.8Sm0.2O2-coated Ni/YSZ anodes for intermediate temperature solid oxide fuel cells , 2011 .

[56]  L. Jian,et al.  Computational analysis of atomic C and S adsorption on Ni, Cu, and Ni-Cu SOFC anode surfaces , 2012 .

[57]  Scott A. Barnett,et al.  Operation of anode-supported solid oxide fuel cells on methane and natural gas , 2003 .

[58]  S. Neophytides,et al.  Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming , 2010 .

[59]  Yongcheng Jin,et al.  Improvement in Durability and Performance of Nickel Cermet Anode with SrZr0.95Y0.05O3-α in Dry Methane Fuel , 2009 .

[60]  J. Rostrup-Nielsen Mechanisms of carbon formation on nickel-containing catalysts , 1977 .

[61]  E. Boellaard,et al.  The formation of filamentous carbon on iron and nickel catalysts : II. Mechanism , 1985 .

[62]  Beatriz Fidalgo,et al.  CO2 reforming of coke oven gas over a Ni/γAl2O3 catalyst to produce syngas for methanol synthesis , 2012 .

[63]  Dehua Dong,et al.  Direct liquid methanol-fueled solid oxide fuel cell , 2008 .

[64]  Zongping Shao,et al.  Methane-fueled IT-SOFCs with facile in situ inorganic templating synthesized mesoporous Sm0.2Ce0.8O1.9 as catalytic layer , 2007 .

[65]  M. Mogensen,et al.  Three-phase-boundary dynamics at the Ni/ScYSZ interface , 2009 .

[66]  S. Assabumrungrat,et al.  Modelling of tubular-designed solid oxide fuel cell with indirect internal reforming operation fed by different primary fuels , 2010 .

[67]  Brian C. H. Steele,et al.  Operation of solid oxide fuel cells at reduced temperatures , 1999 .

[68]  S. Freni,et al.  Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell , 2001 .

[69]  Y. Matsuzaki,et al.  Initial Damage to Anode Microstructure Caused by Partial Redox Cycles during Electrochemical Oxidation , 2009 .

[70]  Meilin Liu,et al.  A First-Principles Analysis for Sulfur Tolerance of CeO2 in Solid Oxide Fuel Cells , 2007 .

[71]  N. Zhang,et al.  Performance of mix‐impregnated CeO2‐Ni/YSZ Anodes for Direct Oxidation of Methane in Solid Oxide Fuel Cells , 2009 .

[72]  T. Ishihara,et al.  Dimethyl Ether Fueled Intermediate Temperature SOFC Using LaGaO3-Based Perovskite Electrolytes , 2002 .

[73]  John Bøgild Hansen,et al.  Correlating Sulfur Poisoning of SOFC Nickel Anodes by a Temkin Isotherm , 2008 .

[74]  Zheng Jiang,et al.  Characterization of aerogel Ni/Al2O3 catalysts and investigation on their stability for CH4-CO2 reforming in a fluidized bed , 2009 .

[75]  I. Yamanaka,et al.  Alloying effects of Pd and Ni on the catalysis of the oxidation of dry CH4 in solid oxide fuel cells , 2009 .

[76]  Gregory S. Jackson,et al.  Electrochemical Oxidation of H2, CO, and CO ∕ H2 Mixtures on Patterned Ni Anodes on YSZ Electrolytes , 2006 .

[77]  Hee Chun Lim,et al.  Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel , 2002 .

[78]  Q. Ma,et al.  Anode-supported planar SOFC with high performance and redox stability , 2010 .

[79]  H. Wise,et al.  Hydrogenation of surface carbon on alumina-supported nickel , 1979 .

[80]  F. Chen,et al.  Sm 0.2 (Ce 1-x Ti x ) 0.8 O 1.9 Modified Ni-Yttria-Stabilized Zirconia Anode for Direct Methane Fuel Cell , 2011 .

[81]  Zongping Shao,et al.  A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer , 2011 .

[82]  Rolf W. Steinbrech,et al.  Advanced measurement techniques to characterize thermo-mechanical aspects of solid oxide fuel cells , 2007 .

[83]  T. Hibino,et al.  Simplification of Solid Oxide Fuel Cell System Using Partial Oxidation of Methane , 1993 .

[84]  De Chen,et al.  Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition , 2005 .

[85]  A. Hagen,et al.  The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells , 2009 .

[86]  Suttichai Assabumrungrat,et al.  Catalytic steam reforming of dimethyl ether (DME) over high surface area Ce–ZrO2 at SOFC temperature: The possible use of DME in indirect internal reforming operation (IIR-SOFC) , 2007 .

[87]  Andrew M. Colclasure,et al.  Modeling Electrochemical Oxidation of Hydrogen on Ni–YSZ Pattern Anodes , 2009 .

[88]  Hao Wu,et al.  Low-temperature ceria-electrolyte solid oxide fuel cells for efficient methanol oxidation , 2011 .

[89]  D. Ferri,et al.  Methane combustion on some perovskite-like mixed oxides , 1998 .

[90]  H. Matsumoto,et al.  Ni–Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film , 2006 .

[91]  H. Yahiro,et al.  Electrocatalytic performances of Ni/SDC anodes fabricated with EPD techniques for direct oxidation of CH4 in solid oxide fuel cells , 2008 .

[92]  Xiujuan Sun,et al.  Use of a catalyst layer for anode-supported SOFCs running on ethanol fuel , 2008 .

[93]  Douglas G. Ivey,et al.  Thermal analysis of the cyclic reduction and oxidation behaviour of SOFC anodes , 2005 .

[94]  Wen-Yueh Yu,et al.  Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation , 2008 .

[95]  Zongping Shao,et al.  Effect of nickel content and preparation method on the performance of Ni-Al2O3 towards the applications in solid oxide fuel cells , 2011 .

[96]  Tohru Kato,et al.  Imaging of CH4 decomposition around the Ni/YSZ interfaces under anodic polarization , 2005 .

[97]  J. M. Serra,et al.  Redox stability and electrochemical study of nickel doped chromites as anodes for H2/CH4-fueled solid oxide fuel cells , 2012 .

[98]  Volkmar M. Schmidt,et al.  Performance Data of a Proton Exchange Membrane Fuel Cell Using H 2 / CO as Fuel Gas , 1996 .

[99]  Chenghao Yang,et al.  Direct-methane solid oxide fuel cells with Cu1.3Mn1.7O4 spinel internal reforming layer , 2010 .

[100]  Robert J. Kee,et al.  Anode barrier layers for tubular solid-oxide fuel cells with methane fuel streams , 2006 .

[101]  S. Barnett,et al.  Direct operation of solid oxide fuel cells with methane fuel , 2005 .

[102]  Takashi Hibino,et al.  Ru-catalyzed anode materials for direct hydrocarbon SOFCs , 2003 .

[103]  M. Marinšek,et al.  Ni–YSZ SOFC anodes—Minimization of carbon deposition , 2007 .

[104]  H.-E. Vollmar,et al.  Innovative concepts for the coproduction of electricity and syngas with solid oxide fuel cells , 2000 .

[105]  Mogens Bjerg Mogensen,et al.  Structure/Performance Relations for Ni/Yttria‐Stabilized Zirconia Anodes for Solid Oxide Fuel Cells , 2000 .

[106]  Naiqing Zhang,et al.  Enhanced sulfur and carbon coking tolerance of novel co-doped ceria based anode for solid oxide fuel cells , 2012 .

[107]  Nadine Unger,et al.  Improved Attribution of Climate Forcing to Emissions , 2009, Science.

[108]  P. Cobden,et al.  Low temperature catalytic methane-steam reforming over ceria-zirconia supported rhodium , 2010 .

[109]  M. Shishkin,et al.  Oxidation of H2, CH4, and CO Molecules at the Interface between Nickel and Yttria-Stabilized Zirconia: A Theoretical Study Based on DFT , 2009 .

[110]  Bin Zhu,et al.  Carbon doped MO–SDC material as an SOFC anode , 2007 .

[111]  Wei Wang,et al.  Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer , 2009 .

[112]  S. Linic,et al.  Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: The impact of the formation of Ni alloy on chemistry , 2009 .

[113]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[114]  Meilin Liu,et al.  Sulfur Poisoning and Regeneration of Ni-Based Anodes in Solid Oxide Fuel Cells , 2007 .

[115]  Jonghee Han,et al.  Ceria Coatings Effect on H2S Poisoning of Ni/YSZ Anodes for Solid Oxide Fuel Cells , 2010 .

[116]  B. Liu,et al.  Highly active lanthanum doped nickel anode for solid oxide fuel cells directly fuelled with methane , 2007 .

[117]  Xiaohong Li,et al.  Hydrogen production by partial oxidation and reforming of DME , 2005 .

[118]  Wei Wang,et al.  Electric power and synthesis gas co-generation from methane with zero waste gas emission. , 2011, Angewandte Chemie.

[119]  T. Matsui,et al.  Stability of solid oxide fuel cell anodes based on YST–SDC composite with Ni catalyst , 2012 .

[120]  M. Inoue,et al.  Mechanisms of methane decomposition over Ni catalysts at high temperatures , 2008 .

[121]  Zongping Shao,et al.  Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode functional catalyst , 2012 .

[122]  S. Jiang,et al.  Performance and carbon deposition over Pd nanoparticle catalyst promoted Ni/GDC anode of SOFCs in methane, methanol and ethanol fuels , 2012 .

[123]  M. Larrubia,et al.  Improved Pt-Ni nanocatalysts for dry reforming of methane , 2010 .

[124]  G. Saracco,et al.  Methane combustion on Mg-doped LaMnO3 perovskite catalysts , 1999 .

[125]  S. Ramanathan,et al.  Methane-fueled thin film micro-solid oxide fuel cells with nanoporous palladium anodes , 2011 .

[126]  S. Jiang,et al.  An electrode kinetics study of H2 oxidation on Ni/Y2O3–ZrO2 cermet electrode of the solid oxide fuel cell , 1999 .

[127]  M. Inoue,et al.  Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600–750 °C , 2008 .

[128]  O. Kesler,et al.  The influence of incorporating MgO into Ni-based cermets by plasma spraying on anode microstructural and chemical stability in dry methane , 2012 .

[129]  Toshio Suzuki,et al.  Performance of Ni–Fe/gadolinium-doped CeO2 anode supported tubular solid oxide fuel cells using steam reforming of methane , 2012 .

[130]  Suttichai Assabumrungrat,et al.  Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ : The possible use of these fuels in internal reforming SOFC , 2007 .

[131]  Xiaoming Zheng,et al.  The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions , 2010 .

[132]  Anil V. Virkar,et al.  A High Performance, Anode-Supported Solid Oxide Fuel Cell Operating on Direct Alcohol , 2001 .

[133]  R. Keiski,et al.  Thermodynamic equilibrium calculations of sulfur poisoning in Ce–O–S and La–O–S systems , 2005 .

[134]  Xingbao Zhu,et al.  Effect of adding urea on performance of Cu/CeO2/yttria-stabilized zirconia anodes for solid oxide fuel cells prepared by impregnation method , 2011 .

[135]  Meilin Liu,et al.  Computational study of sulfur–nickel interactions: A new S–Ni phase diagram , 2007 .

[136]  Mogens Bjerg Mogensen,et al.  Conversion of Hydrocarbons in Solid Oxide Fuel Cells , 2003 .

[137]  G. Djéga-Mariadassou,et al.  Deep desulfurization: reactions, catalysts and technological challenges , 2003 .

[138]  M. Larrubia,et al.  Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane , 2010 .

[139]  Jingyun Ye,et al.  Progresses in the Preparation of Coke Resistant Ni‐based Catalyst for Steam and CO2 Reforming of Methane , 2011 .

[140]  Suttichai Assabumrungrat,et al.  Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol , 2005 .

[141]  Zongping Shao,et al.  Development of a Ni-Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming , 2011 .

[142]  R. Kee,et al.  The influence of current collection on the performance of tubular anode-supported SOFC cells , 2007 .

[143]  S. Towprayoon,et al.  The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill. , 2006, Journal of environmental management.

[144]  Leilei Xu,et al.  Carbon dioxide reforming of methane over ordered mesoporous NiO–MgO–Al2O3 composite oxides , 2011 .

[145]  Zongping Shao,et al.  Coking-free direct-methanol-flame fuel cell with traditional nickel-cermet anode , 2010 .

[146]  S. Linic,et al.  Hydrocarbon steam reforming on Ni alloys at solid oxide fuel cell operating conditions , 2008 .

[147]  Meilin Liu,et al.  Surface Modification of Ni-YSZ Using Niobium Oxide for Sulfur-Tolerant Anodes in Solid Oxide Fuel Cells , 2008 .

[148]  T. Sakai,et al.  Power-generating property of direct CH4 fueled SOFC using LaGaO3 electrolyte , 2010 .

[149]  Jingli Luo,et al.  Application of BaTiO3 as anode materials for H2S-containing CH4 fueled solid oxide fuel cells , 2012 .

[150]  T. Vinzant,et al.  Manganese and ceria sorbents for high temperature sulfur removal from biomass-derived syngas – The impact of steam on capacity and sorption mode , 2012 .

[151]  R. Kikuchi,et al.  Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether , 2007 .

[152]  Manoj Pillai,et al.  Modeling electrochemical partial oxidation of methane for cogeneration of electricity and syngas in solid-oxide fuel cells , 2008 .

[153]  K. Tomishige,et al.  Studies on Carbon Deposition in CO2Reforming of CH4over Nickel–Magnesia Solid Solution Catalysts , 1999 .

[154]  Liquan Chen,et al.  Investigations of mesoporous CeO2–Ru as a reforming catalyst layer for solid oxide fuel cells , 2006 .

[155]  C. Xia,et al.  Effect of impregnation of Sm-doped CeO2 in NiO/YSZ anode substrate prepared by gelcasting for tubular solid oxide fuel cell , 2009 .

[156]  S. Linic,et al.  Direct electrochemical oxidation of hydrocarbon fuels on SOFCs: Improved carbon tolerance of Ni alloy anodes , 2009 .

[157]  J. Vohs,et al.  Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes , 2006 .

[158]  V. Birss,et al.  A possible solution to the mechanical degradation of Ni–yttria stabilized zirconia anode-supported solid oxide fuel cells due to redox cycling , 2010 .

[159]  Kaoru Fujimoto,et al.  Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio , 1996 .

[160]  Rizwan Raza,et al.  Development of methanol‐fueled low‐temperature solid oxide fuel cells , 2011 .

[161]  Ellen Ivers-Tiffée,et al.  Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells. , 2010, Physical chemistry chemical physics : PCCP.

[162]  Hongjiao Li,et al.  An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode , 2012 .

[163]  Huanting Wang,et al.  Ni1−xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel , 2006 .

[164]  Jong-Nam Kim,et al.  Desulfurization of diesel using ion-exchanged zeolites , 2006 .

[165]  S. Linic,et al.  Measuring and relating the electronic structures of nonmodel supported catalytic materials to their performance. , 2009, Journal of the American Chemical Society.

[166]  V. Sglavo,et al.  Reduction and Reoxidation Processes of NiO∕YSZ Composite for Solid Oxide Fuel Cell Anodes , 2006 .

[167]  K. Sasaki,et al.  Equilibria in Fuel Cell Gases I. Equilibrium Compositions and Reforming Conditions , 2003 .

[168]  J. Hill,et al.  Direct utilization of methanol on impregnated Ni/YSZ and Ni–Zr0.35Ce0.65O2/YSZ anodes for solid oxide fuel cells , 2010 .

[169]  J. Irvine,et al.  Discovery and characterization of novel oxide anodes for solid oxide fuel cells. , 2004, Chemical record.

[170]  John T. S. Irvine,et al.  Methane Oxidation at Redox Stable Fuel Cell Electrode La0.75Sr0.25Cr0.5Mn0.5O3-δ , 2006 .

[171]  S. Kawi,et al.  Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression , 2011 .

[172]  Jin-Hong Kim,et al.  Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts , 2000 .

[173]  Wei Sun,et al.  Silicon nitride supported nickel catalyst for partial oxidation of methane to syngas , 2008 .

[174]  G. Ø. Lauvstad,et al.  Electrochemical oxidation of CO on Pt and Ni point electrodes in contact with an yttria-stabilized zirconia electrolyte: I. Modeling of steady-state and impedance behavior , 2002 .

[175]  J. Alonso,et al.  SrFeO3-δ Perovskite Oxides: Chemical Features and Performance for Methane Combustion , 2002 .

[176]  Hiroshi Takahashi,et al.  Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs , 2006 .

[177]  Hwan Moon,et al.  Performance and durability of Ni-coated YSZ anodes for intermediate temperature solid oxide fuel cells , 2006 .

[178]  E. Ivers-Tiffée,et al.  Studying the COCO 2 characteristics of SOFC anodes by means of patterned Ni anodes , 2011 .

[179]  M. Hatano,et al.  Catalytic Behavior of Pd–Ni/Composite Anode for Direct Oxidation of Methane in SOFCs , 2006 .

[180]  S. Assabumrungrat,et al.  The effect of specific surface area on the activity of nano-scale ceria catalysts for methanol decomposition with and without steam at SOFC operating temperatures , 2006 .

[181]  J. Tardio,et al.  Highly stable ytterbium promoted Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane , 2012 .

[182]  Michael D. Gross,et al.  Electrodeposition of Cu into a Highly Porous Ni ∕ YSZ Cermet , 2006 .

[183]  Rolf W. Steinbrech,et al.  Reduction and re-oxidation of anodes for solid oxide fuel cells , 2005 .

[184]  Hiroshi Mori,et al.  Performance of nickel–scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O–CH4 , 2004 .

[185]  Robert J. Davis,et al.  Comparative study of CO and CO2 hydrogenation over supported Rh–Fe catalysts , 2010 .

[186]  Q. Ge,et al.  CO2 adsorption and activation over γ-Al2O3-supported transition metal dimers: A density functional study , 2009 .

[187]  M. Schmal,et al.  Synthesis of NiAl2O4 with high surface area as precursor of Ni nanoparticles for hydrogen production , 2010 .

[188]  Chunshan Song,et al.  New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization , 2003 .

[189]  S. Chan,et al.  Suppression of Carbon Deposition at CeO2-Modified Ni/YSZ Anodes in Weakly Humidified CH 4 at 850°C , 2005 .

[190]  Hyunjoon Lee,et al.  Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC , 2010 .

[191]  Jing-Yuan Wang,et al.  Effect of Pd-impregnation on performance, sulfur poisoning and tolerance of Ni/GDC anode of solid oxide fuel cells , 2012 .

[192]  C. Turner,et al.  Catalytic activity of bimetallic nickel alloys for solid-oxide fuel cell anode reactions from densit , 2011 .

[193]  T. Ishihara,et al.  Partial oxidation of methane over fuel cell type reactor for simultaneous generation of synthesis gas and electric power , 1999 .

[194]  A. Zaopo,et al.  Novel copper-based anodes for solid oxide fuel cells with samaria-doped ceria electrolyte , 2008 .

[195]  Y. Matsumura,et al.  Steam reforming of methane over nickel catalysts at low reaction temperature , 2004 .

[196]  C. H. Bartholomew Mechanisms of catalyst deactivation , 2001 .

[197]  M. A. Ermakova,et al.  New Nickel Catalysts for the Formation of Filamentous Carbon in the Reaction of Methane Decomposition , 1999 .

[198]  Young-Sam Oh,et al.  Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content , 2002 .

[199]  J. Vohs,et al.  Preparation of SOFC Anodes by Electrodeposition , 2007 .

[200]  Shigeo Goto,et al.  Fuel cell type reactor for Chemicals-energy co-generation , 1999 .

[201]  Zhigang Zhu,et al.  Development of cathodes for methanol and ethanol fuelled low temperature (300–600 °C) solid oxide fuel cells , 2007 .

[202]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[203]  Nigel P. Brandon,et al.  Thermodynamics and Kinetics of the Interaction of Carbon and Sulfur with Solid Oxide fuel Cell Anodes , 2009 .

[204]  U. Ozkan,et al.  Effect of H2O on sulfur poisoning and catalytic activity of Ni–YSZ catalysts , 2011 .

[205]  Chenghao Yang,et al.  Performance enhancement of Ni-YSZ electrode by impregnation of Mo0.1Ce0.9O2+δ , 2012 .

[206]  I. Vinke,et al.  Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes. II. AC polarization characteristics , 1999 .

[207]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[208]  Antonino S. Aricò,et al.  Mitigation of carbon deposits formation in intermediate temperature solid oxide fuel cells fed with dry methane by anode doping with barium , 2009 .

[209]  N. Minh Ceramic Fuel Cells , 1993 .

[210]  Studying reduction in solid oxide fuel cell activity with density functional theory-effects of hydrogen sulfide adsorption on nickel anode surface , 2007 .

[211]  S. Nam,et al.  Effect of Sm0.2Ce0.8O1.9 on the carbon coking in Ni-based anodes for solid oxide fuel cells running on methane fuel , 2012 .

[212]  A. Lanzini,et al.  Operation of a solid oxide fuel cell under direct internal reforming of liquid fuels , 2012 .

[213]  H. Yahiro,et al.  Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane–solid oxide fuel cells , 2009 .

[214]  W. Bessler,et al.  The Role of Interstitial Hydrogen Species in Ni/YSZ Patterned Anodes: A 2D Modeling Study , 2009 .

[215]  J. Rostrup-Nielsen,et al.  Innovation and science in the process industry: Steam reforming and hydrogenolysis , 1999 .

[216]  Sun Young Park,et al.  Effect of steam content on nickel nano-particle sintering and methane reforming activity of Ni–CZO anode cermets for internal reforming SOFCs , 2012 .

[217]  Catherine M. Grgicak,et al.  Synergistic effects of Ni1−xCox-YSZ and Ni1−xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S , 2008 .

[218]  Xiaolai Wang,et al.  Highly coking resistant and stable Ni/Al2O3 catalysts prepared by W/O microemulsion for partial oxidation of methane , 2004 .

[219]  Scott Q. Turn,et al.  Removal of sulfur compounds from utility pipelined synthetic natural gas using modified activated carbons , 2009 .

[220]  T. Fukui,et al.  Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst , 1996 .

[221]  C. Xia,et al.  Ni–LnOx (Ln = Dy, Ho, Er, Yb and Tb) cermet anodes for intermediate-temperature solid oxide fuel cells , 2011 .

[222]  Hyunjoon Lee,et al.  Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel , 2010 .

[223]  B. Zhu,et al.  Catalysts and Performances for Direct Methanol Low-Temperature ( 300 to 600 ° C ) Solid Oxide Fuel Cells , 2006 .

[224]  Manoj Pillai,et al.  Fuel-flexible operation of a solid oxide fuel cell with Sr0.8La0.2TiO3 support , 2008 .

[225]  Dimitris Sarantaridis,et al.  Redox Cycling of Ni‐Based Solid Oxide Fuel Cell Anodes: A Review , 2007 .

[226]  W. L. Worrell,et al.  Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells , 2002 .

[227]  Hwan Moon,et al.  Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating , 2009 .

[228]  Yoshio Matsuzaki,et al.  Electrochemical Oxidation of H 2 and CO in a H 2 ‐ H 2 O ‐ CO ‐ CO 2 System at the Interface of a Ni‐YSZ Cermet Electrode and YSZ Electrolyte , 2000 .

[229]  W. L. Holstein The roles of ordinary and soret diffusion in the metal-catalyzed formation of filamentous carbon , 1995 .

[230]  U. Stimming,et al.  Recent anode advances in solid oxide fuel cells , 2007 .

[231]  Zongping Shao,et al.  Effect of fabrication method on properties and performance of bimetallic Ni0.75Fe0.25 anode catalyst for solid oxide fuel cells , 2012 .

[232]  L. Gauckler,et al.  The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes , 2001 .

[233]  Chenghao Yang,et al.  Intermediate temperature solid oxide fuel cells with Cu1.3Mn1.7O4 internal reforming layer , 2012 .

[234]  M. Sano,et al.  Single-Chamber SOFCs Using Dimethyl Ether and Ethanol , 2007 .

[235]  S. Barnett,et al.  High-rate electrochemical partial oxidation of methane in solid oxide fuel cells , 2006 .

[236]  S. C. Dhingra,et al.  K-, CeO2-, and Mn-promoted Ni/Al2O3 catalysts for stable CO2 reforming of methane , 2005 .

[237]  T. Manios,et al.  Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. , 2009, Bioresource technology.

[238]  Stephen J. Harris,et al.  Solid Oxide Fuel Cells Utilizing Dimethyl Ether Fuel , 2002 .

[239]  E. Croiset,et al.  Lanthanum promoted NiO–SDC anode for low temperature solid oxide fuel cells fueled with methane , 2012 .

[240]  E. Ivers-Tiffée,et al.  Internal Reforming of Methane at Ni/YSZ and Ni/CGO SOFC Cermet Anodes , 2006 .

[241]  Qingfeng Ge,et al.  Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst , 2010 .

[242]  S. Jiang,et al.  Hydrogen Oxidation at the Nickel and Platinum Electrodes on Yttria‐Tetragonal Zirconia Electrolyte , 1997 .

[243]  C. Xia,et al.  Ni-Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells with stabilized zirconia electrolytes , 2011 .

[244]  Rak-Hyun Song,et al.  Redox-induced performance degradation of anode-supported tubular solid oxide fuel cells , 2011 .

[245]  Z. Hou,et al.  Syngas production via combined oxy-CO2 reforming of methane over Gd2O3-modified Ni/SiO2 catalysts in a fluidized-bed reactor , 2008 .

[246]  H. Sumi,et al.  Effects of crystal Structure of yttria- and scandia-stabilized zirconia in nickel-based SOFC anodes , 2011 .

[247]  Y. Xiong,et al.  Materials and reaction mechanisms at anode/electrolyte interfaces for SOFCs , 2006 .

[248]  Yunhui Huang,et al.  Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels , 2011 .

[249]  S. Wasmus,et al.  Methanol oxidation and direct methanol fuel cells: a selective review 1 In honour of Professor W. Vi , 1999 .

[250]  J. Armor,et al.  The multiple roles for catalysis in the production of H2 , 1999 .

[251]  Suljo Linic,et al.  First-Principles Analysis of the Activity of Transition and Noble Metals in the Direct Utilization of Hydrocarbon Fuels at Solid Oxide Fuel Cell Operating Conditions , 2009 .

[252]  Chusheng Chen,et al.  Partial oxidation of methane in a Zr0.84Y0.16O1.92–La0.8Sr0.2Cr0.5Fe0.5O3−δ hollow fiber membrane reactor targeting solid oxide fuel cell applications , 2012 .

[253]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[254]  J. Hill,et al.  Preparation of Cu–Ni/YSZ solid oxide fuel cell anodes using microwave irradiation , 2011 .

[255]  Meilin Liu,et al.  Identification of nickel sulfides on Ni-YSZ cermet exposed to H2 fuel containing H2S using Raman spectroscopy , 2006 .

[256]  A. Lemonidou,et al.  Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst , 2002 .

[257]  Cheng-Hsien Tsai,et al.  Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor , 2010 .

[258]  Kevin Kendall,et al.  Formulating liquid hydrocarbon fuels for SOFCs , 2004 .

[259]  Mogens Bjerg Mogensen,et al.  Kinetic and geometric aspects of solid oxide fuel cell electrodes , 1996 .

[260]  S. Furukawa,et al.  Hydrogen spillover from NiO to the large surface area CeO2-ZrO2 solid solutions and activity of the NiO/CeO2-ZrO2 catalysts for partial oxidation of methane , 2001 .

[261]  D. Ivey,et al.  Initial Testing of Solutions to Redox Problems with Anode-Supported SOFC , 2006 .

[262]  G. Armatas,et al.  Kinetics of methane oxidation over La–Sr–Ce–Fe–O mixed oxide solids , 2001 .

[263]  I. Mochida,et al.  A comparative kinetic study on ultra-deep hydrodesulfurization of pre-treated gas oil over nanosized MoS2, CoMo-sulfide, and commercial CoMo/Al2O3 catalysts. , 2012, Journal of colloid and interface science.

[264]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[265]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[266]  Raymond J. Gorte,et al.  A Study of SOFC Anodes Based on Cu-Ni and Cu-Co Bimetallics in CeO2 ­ YSZ , 2004 .

[267]  Clausen,et al.  Design of a surface alloy catalyst for steam reforming , 1998, Science.

[268]  Jun Ni,et al.  Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts , 2008 .

[269]  Massimiliano Cimenti,et al.  Importance of pyrolysis and catalytic decomposition for the direct utilization of methanol in solid oxide fuel cells , 2010 .

[270]  B. Steele,et al.  Oxidation of methane in solid state electrochemical reactors , 1988 .

[271]  San Ping Jiang,et al.  A comparative study of H2S poisoning on electrode behavior of Ni/YSZ and Ni/GDC anodes of solid oxide fuel cells , 2010 .

[272]  T. Yashima,et al.  Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2 , 2003 .

[273]  M. Hatano,et al.  Mechanism of Suppression of Carbon Deposition on the Pd−Ni/Ce(Sm)O2−La(Sr)CrO3 Anode in Dry CH4 Fuel , 2008 .

[274]  W. Kiatkittipong,et al.  Effects of support and co-fed elements on steam reforming of palm fatty acid distillate (PFAD) over Rh-based catalysts , 2010 .

[275]  Tohru Kato,et al.  Oxygen reduction sites and diffusion paths at La0.9Sr0.1MnO3âx/yttria-stabilized zirconia interface for different cathodic overvoltages by secondary-ion mass spectrometry , 2000 .

[276]  J. Tay,et al.  Production of hydrogen and methane from wastewater sludge using anaerobic fermentation. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[277]  Yulong Zhang,et al.  Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion , 2012 .

[278]  Scott A. Barnett,et al.  Improving the stability of direct-methane solid oxide fuel cells using anode barrier layers , 2006 .

[279]  Ching-ju Wen,et al.  Carbon deposition behaviour on Ni–ScSZ anodes for internal reforming solid oxide fuel cells , 2004 .

[280]  Rajesh K. Ahluwalia,et al.  A natural-gas fuel processor for a residential fuel cell system. , 2009 .

[281]  J. Kilner,et al.  Oxygen diffusion and surface exchange studies on (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ , 2006 .

[282]  Weiping Pan,et al.  Redox of Ni/YSZ anodes and oscillatory behavior in single-chamber SOFC under methane oxidation conditions , 2011 .

[283]  Christopher S. Johnson,et al.  Sulfur-tolerant anode materials for solid oxide fuel cell application , 2007 .

[284]  J. Vohs,et al.  Role of Hydrocarbon Deposits in the Enhanced Performance of Direct-Oxidation SOFCs , 2003 .

[285]  Ned Djilali,et al.  An assessment of alkaline fuel cell technology , 2002 .

[286]  Donghai Mei,et al.  Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100). , 2010, Langmuir : the ACS journal of surfaces and colloids.

[287]  Massimiliano Cimenti,et al.  Thermodynamic analysis of solid oxide fuel cells operated with methanol and ethanol under direct utilization, steam reforming, dry reforming or partial oxidation conditions , 2009 .

[288]  C. Au,et al.  CO2/CH4 Reforming over Ni–La2O3/5A: An Investigation on Carbon Deposition and Reaction Steps , 2000 .

[289]  J. Nørskov,et al.  First principles calculations and experimental insight into methane steam reforming over transition metal catalysts , 2008 .

[290]  N. Danilovic,et al.  Ce0.9Sr0.1VOx (x = 3, 4) as anode materials for H2S-containing CH4 fueled solid oxide fuel cells , 2009 .

[291]  A. Trovarelli,et al.  Catalytic Properties of Ceria and CeO2-Containing Materials , 1996 .

[292]  Tao Zhang,et al.  Development of a Co–Ni bimetallic aerogel catalyst for hydrogen production via methane oxidative CO2 reforming in a magnetic assisted fluidized bed , 2010 .

[293]  F. Chen,et al.  Electro-catalytic activity of Dy2O3 as a solid oxide fuel cell anode material , 2011 .

[294]  Brian C. H. Steele,et al.  Intermediate temperature solid oxide fuel cells operated with methanol fuels , 2000 .

[295]  I. Dincer,et al.  Performance comparison of two combined SOFC–gas turbine systems , 2007 .

[296]  Jens R. Rostrup-Nielsen,et al.  Theoretical Studies of Stability and Reactivity of CHx Species on Ni(111) , 2000 .

[297]  Xiaofeng Yang,et al.  Single-atom catalysis of CO oxidation using Pt1/FeOx. , 2011, Nature chemistry.

[298]  Vinod M. Janardhanan,et al.  Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells , 2005 .

[299]  A. Hagiwara,et al.  Effect of Yttrium-Doped Barium Zirconate on Reactions in Electrochemically Active Zone of Nickel/Yttria-Stabilized Zirconia Anodes , 2011 .

[300]  Yongcheng Jin,et al.  Suppressed Carbon Deposition Behavior in Nickel/Yittria-Stablized Zirconia Anode with SrZr0.95Y0.05O3 − α in Dry Methane Fuel , 2010 .

[301]  Kazunari Sasaki,et al.  Fuel Impurity Tolerance of Solid Oxide Fuel Cells , 2007 .

[302]  M. Yamada,et al.  Effect of NiO content in mesoporous NiO–Al2O3 catalysts for high pressure partial oxidation of methane to syngas , 2011 .

[303]  Zongping Shao,et al.  Improving Single-Chamber Performance of an Anode-Supported SOFC by Impregnating Anode with Active Nickel Catalyst , 2010 .

[304]  Mogens Bjerg Mogensen,et al.  Dimensional Behavior of Ni─YSZ Composites during Redox Cycling , 2009 .

[305]  J. Sehested,et al.  Four challenges for nickel steam-reforming catalysts , 2006 .

[306]  F. Aldinger,et al.  The influence of the solid electrolyte on the impedance of hydrogen oxidation at patterned Ni electrodes , 2010 .

[307]  Josephine M. Hill,et al.  Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane , 2008 .

[308]  De Chen,et al.  Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming , 2006 .

[309]  Zongping Shao,et al.  Nickel catalyst prepared via glycine nitrate process for partial oxidation of methane to syngas , 2008 .

[310]  S. Jiang,et al.  A review of anode materials development in solid oxide fuel cells , 2004 .

[311]  T. Wen,et al.  Enabling catalysis of Ru–CeO2 for propane oxidation in low temperature solid oxide fuel cells , 2012 .

[312]  R. W. Jackson,et al.  The effect of minor elements on the growth and electrical properties of NiO on Ni , 2008 .

[313]  Z. Ogumi,et al.  Preparation of Perovskite‐Type La1 − x Sr x MnO3 Films by Vapor‐Phase Processes and Their Electrochemical Properties II. Effects of Doping Strontium to on the Electrode Properties , 1998 .

[314]  Suk Woo Nam,et al.  Improvement of anode performance by surface modification for solid oxide fuel cell running on hydrocarbon fuel , 2004 .

[315]  S. H. Kim,et al.  Effect of promoter on Ni/MgO catalyst in C8H18 autothermal reforming in solid oxide fuel cell system , 2010 .

[316]  D. Brett,et al.  The effect of current density on H2S-poisoning of nickel-based solid oxide fuel cell anodes , 2011 .

[317]  O. T. Olakoyejo,et al.  A thermodynamic analysis of a biogas-fired integrated gasification steam injected gas turbine (BIG/STIG) plant , 2007 .

[318]  S. McIntosh,et al.  Influence of lattice oxygen stoichiometry on the mechanism of methane oxidation in SOFC anodes , 2011 .

[319]  Kazunari Sasaki,et al.  NiO–ScSZ and Ni0.9Mg0.1O–ScSZ-based anodes under internal dry reforming of simulated biogas mixtures , 2008 .

[320]  Ryuji Kikuchi,et al.  Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets , 2002 .

[321]  Caine M. Finnerty,et al.  Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane , 1998 .

[322]  Wenjian Weng,et al.  Catalytic modification of Ni-Sm-doped ceria anodes with copper for direct utilization of dry methane in low-temperature solid oxide fuel cells , 2008 .

[323]  Lei Shi,et al.  Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4 , 2010 .

[324]  L. D. Jonghe,et al.  Ceria Nanocoating for Sulfur Tolerant Ni-Based Anodes of Solid Oxide Fuel Cells , 2007 .

[325]  Antonino S. Aricò,et al.  Direct utilization of methanol in solid oxide fuel cells: An electrochemical and catalytic study , 2011 .

[326]  Jonghee Han,et al.  The effect of a ceria coating on the H2S tolerance of a molten carbonate fuel cell , 2006 .

[327]  S. Assabumrungrat,et al.  Comparison of carbon formation boundary in different modes of solid oxide fuel cells fueled by methane , 2005 .

[328]  Y. Matsuzaki,et al.  The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I , 2000 .

[329]  Eric Liese,et al.  Performance Comparison of Internal Reforming Against External Reforming in a Solid Oxide Fuel Cell, Gas Turbine Hybrid System , 2005 .

[330]  D. P. Fagg,et al.  Electrochemical behaviour and degradation of (Ni,M)/YSZ cermet electrodes (M=Co,Cu,Fe) for high temperature applications of solid electrolytes , 2004 .

[331]  Manoj Pillai,et al.  Electrochemical Partial Oxidation of Methane in Solid Oxide Fuel Cells: Effect of Anode Reforming Activity , 2008 .

[332]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[333]  E. Ivers-Tiffée,et al.  Elementary kinetic modeling and experimental validation of electrochemical CO oxidation on Ni/YSZ pattern anodes , 2012 .

[334]  John M. Vohs,et al.  Nanostructured anodes for solid oxide fuel cells , 2009 .

[335]  Mogens Bjerg Mogensen,et al.  In Situ Observations of Microstructural Changes in SOFC Anodes during Redox Cycling , 2006 .

[336]  P. Liu,et al.  Synthesis of light hydrocarbons from syngas in near-critical phase , 2011 .

[337]  K. Sasaki,et al.  Ni1−x−yMgxAlyO–ScSZ anodes for solid oxide fuel cells , 2006 .

[338]  Z. Önsan,et al.  Investigation of catalyst performance and microstructured reactor configuration for syngas production by methane steam reforming , 2011 .

[339]  M. Orio,et al.  Density functional theory , 2009, Photosynthesis Research.

[340]  Raymond J. Gorte,et al.  Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid‐Oxide Fuel Cell , 2000 .

[341]  D. Klvana,et al.  Kinetics of propane combustion over La0.66Sr0.34Ni0.3Co0.7O3 perovskite , 2001 .

[342]  Zongping Shao,et al.  Physically mixed LiLaNi–Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation , 2011 .

[343]  A. Anderson,et al.  Hydrogen oxidation and proton transport at the Ni–zirconia interface in solid oxide fuel cell anodes: Quantum chemical predictions , 2006 .

[344]  M. A. Ermakova,et al.  Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon: Part I. Nickel catalysts , 2000 .

[345]  T. Ishihara,et al.  Reoxidation behavior of Ni–Fe bimetallic anode substrate in solid oxide fuel cells using a thin LaGaO3 based film electrolyte , 2011 .

[346]  Jacob Brouwer,et al.  A thermodynamic analysis of electricity and hydrogen co-production using a solid oxide fuel cell , 2005 .

[347]  Yongcheng Jin,et al.  Improved electrochemical properties of Ni/YSZ anodes infiltrated by proton conductor SZY in solid oxide fuel cells with dry methane fuel: Dependence on amount of SZY , 2010 .

[348]  Shaobin Wang,et al.  Role of CeO2 in Ni/CeO2–Al2O3 catalysts for carbon dioxide reforming of methane , 1998 .

[349]  C. Adjiman,et al.  Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance , 2004 .

[350]  Zongping Shao,et al.  Reducing the operation temperature of a solid oxide fuel cell using a conventional nickel-based cerm , 2011 .

[351]  Wolfgang G. Bessler,et al.  A new computational approach for SOFC impedance from detailed electrochemical reaction–diffusion models , 2005 .

[352]  Zongping Shao,et al.  Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel , 2011 .

[353]  Masahiro Watanabe,et al.  Activity and Stability of Ordered and Disordered Co‐Pt Alloys for Phosphoric Acid Fuel Cells , 1994 .

[354]  Ellen Ivers-Tiffée,et al.  Degradation and Relaxation Effects of Ni Patterned Anodes in H2 – H2O Atmosphere , 2010 .

[355]  François Maréchal,et al.  Process flow model of solid oxide fuel cell system supplied with sewage biogas , 2004 .

[356]  A. N. Busawon,et al.  Ni Infiltration as a Possible Solution to the Redox Problem of SOFC Anodes , 2008 .

[357]  Robert T. Rozmiarek,et al.  Effect of nickel microstructure on methane steam-reforming activity of Ni–YSZ cermet anode catalyst , 2008 .

[358]  T. Ishihara,et al.  Partial oxidation of dimethyl ether over various supported metal catalysts , 2002 .

[359]  Meilin Liu,et al.  Surface regeneration of sulfur-poisoned Ni surfaces under SOFC operation conditions predicted by first-principles-based thermodynamic calculations , 2008 .

[360]  Lars Ellegaard,et al.  Effects of mixing on methane production during thermophilic anaerobic digestion of manure: lab-scale and pilot-scale studies. , 2008, Bioresource technology.

[361]  Suljo Linic,et al.  Promotion of the long-term stability of reforming Ni catalysts by surface alloying , 2007 .

[362]  W. Guo,et al.  Effect of impregnation phases on the performance of Ni-based anodes for low temperature solid oxide fuel cells , 2011 .

[363]  D. L Trimm,et al.  Catalysts for the control of coking during steam reforming , 1999 .

[364]  J. Conesa,et al.  Catalytic properties of monometallic copper and bimetallic copper-nickel systems combined with ceria and Ce-X (X = Gd, Tb) mixed oxides applicable as SOFC anodes for direct oxidation of methane , 2007 .

[365]  Ji-won Son,et al.  Superior compositional homogeneity and long-term catalytic stability of Ni–Ce0.75Zr0.25O2 cermets prepared via glycine nitrate process , 2009 .

[366]  S. McIntosh,et al.  The rate and selectivity of methane oxidation over La0.75Sr0.25CrxMn1−xO3−δ as a function of lattice oxygen stoichiometry under solid oxide fuel cell anode conditions , 2008 .

[367]  Xiaoming Zheng,et al.  The deposition of coke from methane on a Ni/MgAl2O4 catalyst , 2007 .

[368]  M. Koyama,et al.  Chemical durability of Solid Oxide Fuel Cells: Influence of impurities on long-term performance , 2011 .

[369]  D. Alfonso First-principles studies of H2S adsorption and dissociation on metal surfaces , 2008 .

[370]  S. Wright,et al.  Natural gas internal combustion engine hybrid passenger vehicle , 2008 .

[371]  D. Ding,et al.  Ni-LnOx (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) cermet anodes for intermediate-temperature solid oxide fuel cells , 2010 .

[372]  S. Hyun,et al.  Performance Improvement of Oxide Catalyst-Doped Anode-Supported SOFCs for Methane Fuel , 2010 .

[373]  R. Kikuchi,et al.  Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode , 2003 .

[374]  Manoj Pillai,et al.  Stability and coking of direct-methane solid oxide fuel cells: Effect of CO2 and air additions , 2010 .

[375]  A. Dicks Advances in catalysts for internal reforming in high temperature fuel cells , 1998 .

[376]  A. Hagen,et al.  Durability of solid oxide fuel cells using sulfur containing fuels , 2011 .

[377]  G. Jacobs,et al.  Steam Reforming of Ethanol over Pt/ceria with Co-fed Hydrogen , 2007 .

[378]  S. Linic,et al.  Controlling carbon surface chemistry by alloying: carbon tolerant reforming catalyst. , 2006, Journal of the American Chemical Society.

[379]  J. Hill,et al.  Carbon tolerance, electrochemical performance and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia anodes impregnated with Sn and operated with methane , 2012 .

[380]  Chunshan Song,et al.  Low-temperature steam reforming of jet fuel in the absence and presence of sulfur over Rh and Rh–Ni catalysts for fuel cells , 2006 .

[381]  Bing Sun,et al.  Ni/YSZ and Ni–CeO2/YSZ anodes prepared by impregnation for solid oxide fuel cells , 2007 .

[382]  I. Yentekakis,et al.  Catalytic and electrocatalytic behavior of Ni-based cermet anodes under internal dry reforming of CH4 + CO2 mixtures in SOFCs , 2006 .

[383]  Seetharama C. Deevi,et al.  A review on the status of anode materials for solid oxide fuel cells , 2003 .

[384]  C. H. Bartholomew Carbon Deposition in Steam Reforming and Methanation , 1982 .

[385]  Menderes Levent,et al.  Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor , 2003 .

[386]  T. Takagi,et al.  Kinetic studies of the reaction at the nickel pattern electrode on YSZ in H2H2O atmospheres , 1994 .

[387]  Hyun-Seog Roh,et al.  Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions , 2012 .

[388]  V. Birss,et al.  Effect of hydrogen sulfide on the direct internal reforming of methane in solid oxide fuel cells , 2009 .

[389]  Xinli Zhu,et al.  Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane , 2008 .

[390]  S. Barnett,et al.  An Octane-Fueled Solid Oxide Fuel Cell , 2005, Science.

[391]  Douglas G. Ivey,et al.  Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes , 2005 .

[392]  Scott A. Barnett,et al.  Use of a catalyst layer for propane partial oxidation in solid oxide fuel cells , 2005 .

[393]  Nishant M. Tikekar,et al.  Reduction and Reoxidation Kinetics of Nickel-Based SOFC Anodes , 2006 .

[394]  S. Neophytides,et al.  Dissociative adsorption of CH4 on NiAu/YSZ: The nature of adsorbed carbonaceous species and the inhibition of graphitic C formation , 2006 .

[395]  S. Linic,et al.  First-Principles Investigations of Electrochemical Oxidation of Hydrogen at Solid Oxide Fuel Cell Operating Conditions , 2007 .

[396]  Stylianos G. Neophytides,et al.  Carbon tolerant Ni-Au SOFC electrodes operating under internal steam reforming conditions , 2008 .

[397]  Taeyoon Kim,et al.  Deactivation of ceria-based SOFC anodes in methanol , 2007 .

[398]  Jiang Liu,et al.  (Ni0.75Fe0.25–xMgO)/YSZ anode for direct methane solid-oxide fuel cells , 2011 .

[399]  V. Antonucci,et al.  Performance and life-time behaviour of NiCu–CGO anodes for the direct electro-oxidation of methane in IT-SOFCs , 2007 .

[400]  Y. Korai,et al.  Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization , 2004 .

[401]  H. Kwak,et al.  Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane , 2011 .

[402]  R. Luque,et al.  Efficient hydrogenation of carbonyl compounds using low-loaded supported copper nanoparticles under microwave irradiation , 2010 .

[403]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .