Estimating parameters and predicting membrane voltages with conductance-based neuron models

Recent results demonstrate techniques for fully quantitative, statistical inference of the dynamics of individual neurons under the Hodgkin–Huxley framework of voltage-gated conductances. Using a variational approximation, this approach has been successfully applied to simulated data from model neurons. Here, we use this method to analyze a population of real neurons recorded in a slice preparation of the zebra finch forebrain nucleus HVC. Our results demonstrate that using only 1,500 ms of voltage recorded while injecting a complex current waveform, we can estimate the values of 12 state variables and 72 parameters in a dynamical model, such that the model accurately predicts the responses of the neuron to novel injected currents. A less complex model produced consistently worse predictions, indicating that the additional currents contribute significantly to the dynamics of these neurons. Preliminary results indicate some differences in the channel complement of the models for different classes of HVC neurons, which accords with expectations from the biology. Whereas the model for each cell is incomplete (representing only the somatic compartment, and likely to be missing classes of channels that the real neurons possess), our approach opens the possibility to investigate in modeling the plausibility of additional classes of channels the cell might possess, thus improving the models over time. These results provide an important foundational basis for building biologically realistic network models, such as the one in HVC that contributes to the process of song production and developmental vocal learning in songbirds.

[1]  Bin Deng,et al.  Reconstruction of neuronal input through modeling single-neuron dynamics and computations. , 2016, Chaos.

[2]  Amir Ayali,et al.  Rhythmic behaviour and pattern-generating circuits in the locust: key concepts and recent updates. , 2010, Journal of insect physiology.

[3]  D. Margoliash,et al.  Parallel pathways and convergence onto HVc and adjacent neostriatum of adult zebra finches (Taeniopygia guttata) , 1995, The Journal of comparative neurology.

[4]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[5]  Shigeru Shinomoto,et al.  Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold , 2009, Front. Comput. Neurosci..

[6]  Nathan F. Lepora,et al.  Efficient fitting of conductance-based model neurons from somatic current clamp , 2011, Journal of Computational Neuroscience.

[7]  Kevin L. Briggman,et al.  Optical Imaging of Neuronal Populations During Decision-Making , 2005, Science.

[8]  Dezhe Z. Jin,et al.  Support for a synaptic chain model of neuronal sequence generation , 2010, Nature.

[9]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[10]  Henry D. I. Abarbanel,et al.  Predicting the Future: Completing Models of Observed Complex Systems , 2013 .

[11]  P. Jonas,et al.  Kv3 Potassium Conductance is Necessary and Kinetically Optimized for High-Frequency Action Potential Generation in Hippocampal Interneurons , 2003, The Journal of Neuroscience.

[12]  Wulfram Gerstner,et al.  The quantitative single-neuron modeling competition , 2008, Biological Cybernetics.

[13]  N. Saito,et al.  Sodium‐ and calcium‐dependent conductances of neurones in the zebra finch hyperstriatum ventrale pars caudale in vitro. , 1991, The Journal of physiology.

[14]  James S. Trimmer,et al.  Analysis and functional implications of phosphorylation of neuronal voltage-gated potassium channels , 2010, Neuroscience Letters.

[15]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[16]  I. Forsythe,et al.  SYMPOSIUM REVIEW: Going native: voltage‐gated potassium channels controlling neuronal excitability , 2010, The Journal of physiology.

[17]  Mark Kostuk,et al.  Dynamical estimation of neuron and network properties I: variational methods , 2011, Biological Cybernetics.

[18]  Amrita X. Sarkar,et al.  Exploiting mathematical models to illuminate electrophysiological variability between individuals , 2012, The Journal of physiology.

[19]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[20]  R. Mooney Different Subthreshold Mechanisms Underlie Song Selectivity in Identified HVc Neurons of the Zebra Finch , 2000, The Journal of Neuroscience.

[21]  Erik De Schutter,et al.  Automated neuron model optimization techniques: a review , 2008, Biological Cybernetics.

[22]  B. Nixdorf,et al.  Morphology of Golgi‐impregnated neurons in hyperstriatum ventralis, pars caudalis in adult male and female canaries , 1989, The Journal of comparative neurology.

[23]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[24]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[25]  Henry Markram,et al.  A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data , 2007, Front. Neurosci..

[26]  James M. Bower,et al.  A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models , 1999, Journal of Computational Neuroscience.

[27]  H. Sebastian Seung,et al.  Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC , 2007, Journal of Computational Neuroscience.

[28]  Vincent A. Pieribone,et al.  Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe , 2012, Neuron.

[29]  D. Perkel,et al.  Multiple cell types distinguished by physiological, pharmacological, and anatomic properties in nucleus HVc of the adult zebra finch. , 1998, Journal of neurophysiology.

[30]  Kevin H Hobbs,et al.  Using complicated, wide dynamic range driving to develop models of single neurons in single recording sessions. , 2008, Journal of neurophysiology.

[31]  Eve Marder,et al.  Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. , 2003, Journal of neurophysiology.

[32]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[33]  Henry D. I. Abarbanel,et al.  Predicting the Future , 2013 .

[34]  Mark Kostuk,et al.  Data assimilation with regularized nonlinear instabilities , 2010 .

[35]  Stephen P. DeWeerth,et al.  A parameter-space search algorithm tested on a Hodgkin–Huxley model , 2007, Biological Cybernetics.

[36]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[37]  Erik De Schutter,et al.  Complex Parameter Landscape for a Complex Neuron Model , 2006, PLoS Comput. Biol..

[38]  Philip E. Gill,et al.  Dynamical Parameter and State Estimation in Neuron Models , 2011 .

[39]  Mark Kostuk,et al.  Dynamical State and Parameter Estimation , 2009, SIAM J. Appl. Dyn. Syst..

[40]  R. Calabrese,et al.  Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. , 2007, Journal of neurophysiology.

[41]  Wulfram Gerstner,et al.  Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. , 2004, Journal of neurophysiology.

[42]  Yonatan Sanz Perl,et al.  Elemental gesture dynamics are encoded by song premotor cortical neurons , 2013, Nature.

[43]  B. Bean,et al.  Robustness of Burst Firing in Dissociated Purkinje Neurons with Acute or Long-Term Reductions in Sodium Conductance , 2005, The Journal of Neuroscience.

[44]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.

[45]  Henk Nijmeijer,et al.  Nonlinear discrete-Time Synchronization via Extended observers , 2001, Int. J. Bifurc. Chaos.

[46]  Robert Clewley,et al.  Inferring and quantifying the role of an intrinsic current in a mechanism for a half-center bursting oscillation , 2011, Journal of biological physics.

[47]  H. Brew,et al.  Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1 , 2003, The Journal of physiology.

[48]  Thomas K. Berger,et al.  Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data , 2008, Biological Cybernetics.

[49]  M. Kubota,et al.  Electrophysiological characteristics of classes of neuron in the HVc of the zebra finch. , 1998, Journal of neurophysiology.

[50]  Rudolf A. Römer,et al.  On large‐scale diagonalization techniques for the Anderson model of localization , 2005, SIAM J. Sci. Comput..

[51]  Michele Pace,et al.  Global parameter estimation of an Hodgkin-Huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits , 2012, Neurocomputing.

[52]  Tim Gollisch,et al.  Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction , 2006, Science.

[53]  Philip E. Gill,et al.  Practical optimization , 1981 .

[54]  B. Jouvet,et al.  Quantum aspects of classical and statistical fields , 1979 .

[55]  R. Mooney,et al.  The HVC Microcircuit: The Synaptic Basis for Interactions between Song Motor and Vocal Plasticity Pathways , 2005, The Journal of Neuroscience.

[56]  Mark Kostuk,et al.  Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods , 2012, Biological Cybernetics.

[57]  Stephen D. Shea,et al.  Neuron-specific Cholinergic Modulation of a Forebrain Song Control Nucleus Preparation of Brain Slices , 2022 .

[58]  Marguerita E Klein,et al.  Telencephalic Neurons Monosynaptically Link Brainstem and Forebrain Premotor Networks Necessary for Song , 2008, The Journal of Neuroscience.

[59]  Ivan G. Szendro,et al.  On the problem of data assimilation by means of synchronization , 2009 .

[60]  Robert Clewley,et al.  Erratum to: Inferring and quantifying the role of an intrinsic current in a mechanism for a half-center bursting oscillation , 2011 .

[61]  Richard Bertram,et al.  Models of electrical activity: calibration and prediction testing on the same cell. , 2012, Biophysical journal.

[62]  E. Marder,et al.  Variable channel expression in identified single and electrically coupled neurons in different animals , 2006, Nature Neuroscience.

[63]  Jianfeng Feng,et al.  A Self-Organizing State-Space-Model Approach for Parameter Estimation in Hodgkin-Huxley-Type Models of Single Neurons , 2011, PLoS Comput. Biol..

[64]  Wulfram Gerstner,et al.  A benchmark test for a quantitative assessment of simple neuron models , 2008, Journal of Neuroscience Methods.

[65]  Liam Paninski,et al.  Efficient estimation of detailed single-neuron models. , 2006, Journal of neurophysiology.

[66]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[67]  E. Marder,et al.  Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. , 2007, Annual review of physiology.

[68]  K. D. Punta,et al.  An ultra-sparse code underlies the generation of neural sequences in a songbird , 2002 .

[69]  Pierre Baldi,et al.  On the Use of Bayesian Methods for Evaluating Compartmental Neural Models , 1998, Journal of Computational Neuroscience.

[70]  Henry Markram,et al.  Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons , 2008, Biological Cybernetics.

[71]  W. R. Foster,et al.  Significance of conductances in Hodgkin-Huxley models. , 1993, Journal of neurophysiology.

[72]  Henry D. I. Abarbanel,et al.  Effective actions for statistical data assimilation , 2009, 0908.2045.

[73]  D Hochberg,et al.  Effective action for stochastic partial differential equations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[74]  M. Fee,et al.  Singing-related activity of identified HVC neurons in the zebra finch. , 2007, Journal of neurophysiology.

[75]  R. Bertram,et al.  Electrophysiological characterization and computational models of HVC neurons in the zebra finch. , 2013, Journal of neurophysiology.

[76]  K. Rhodes,et al.  Localization of voltage-gated ion channels in mammalian brain. , 2004, Annual review of physiology.

[77]  Michael L. Hines,et al.  NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail , 2010, PLoS Comput. Biol..

[78]  Cengiz Günay,et al.  Channel Density Distributions Explain Spiking Variability in the Globus Pallidus: A Combined Physiology and Computer Simulation Database Approach , 2008, The Journal of Neuroscience.

[79]  Juan M. Restrepo,et al.  A path integral method for data assimilation , 2008 .

[80]  Satish S. Nair,et al.  Neurons within the Same Network Independently Achieve Conserved Output by Differentially Balancing Variable Conductance Magnitudes , 2013, The Journal of Neuroscience.

[81]  E. Marder,et al.  Failure of averaging in the construction of a conductance-based neuron model. , 2002, Journal of neurophysiology.

[82]  Kevin L. Briggman,et al.  Multifunctional pattern-generating circuits. , 2008, Annual review of neuroscience.

[83]  Liam Paninski,et al.  Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings , 2009, PLoS Comput. Biol..

[84]  Dieter Jaeger,et al.  The use of automated parameter searches to improve ion channel kinetics for neural modeling , 2011, Journal of Computational Neuroscience.

[85]  C. Davies,et al.  Ion channels : from structure to function , 2010 .

[86]  James M. Jeanne,et al.  Estimation of parameters in nonlinear systems using balanced synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.