Longitudinal Analysis Framework of DWI Data for Reconstructing Structural Brain Networks with Application to Multiple Sclerosis

[1]  Sébastien Ourselin,et al.  A multi-time-point modality-agnostic patch-based method for lesion filling in multiple sclerosis , 2016, NeuroImage.

[2]  Ninon Burgos,et al.  NiftyWeb: web based platform for image processing on the cloud , 2016 .

[3]  D. Norris,et al.  Structural network efficiency predicts conversion to dementia , 2016, Neurology.

[4]  Bruce Fischl,et al.  Joint reconstruction of white-matter pathways from longitudinal diffusion MRI data with anatomical priors , 2016, NeuroImage.

[5]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[6]  Alan Connelly,et al.  SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography , 2015, NeuroImage.

[7]  Daniel Rueckert,et al.  Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion , 2015, IEEE Transactions on Medical Imaging.

[8]  C. Jack,et al.  Connectivity network measures predict volumetric atrophy in mild cognitive impairment , 2015, Neurobiology of Aging.

[9]  C. Stam Modern network science of neurological disorders , 2014, Nature Reviews Neuroscience.

[10]  Max A. Viergever,et al.  Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data , 2014, NeuroImage.

[11]  Marc Modat,et al.  An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer's disease , 2013, NeuroImage.

[12]  Justin P. Haldar,et al.  Correcting susceptibility-induced distortion in diffusion-weighted MRI using constrained nonrigid registration , 2012, Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference.

[13]  Alan Connelly,et al.  Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information , 2012, NeuroImage.

[14]  Bruce Fischl,et al.  Within-subject template estimation for unbiased longitudinal image analysis , 2012, NeuroImage.

[15]  Sébastien Ourselin,et al.  Consistent multi-time-point brain atrophy estimation from the boundary shift integral , 2012, NeuroImage.

[16]  Amos Storkey,et al.  TractoR: Magnetic Resonance Imaging and Tractography with R , 2011 .

[17]  Bruce Fischl,et al.  Avoiding asymmetry-induced bias in longitudinal image processing , 2011, NeuroImage.

[18]  Alan Connelly,et al.  Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping , 2010, NeuroImage.

[19]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[20]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[21]  Alexander Leemans,et al.  The B‐matrix must be rotated when correcting for subject motion in DTI data , 2009, Magnetic resonance in medicine.

[22]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[23]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[24]  Paul A. Yushkevich,et al.  Deformable registration of diffusion tensor MR images with explicit orientation optimization , 2006, Medical Image Anal..

[25]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[26]  G. Barker,et al.  Technical note: the comparison of hypointense lesions from ‘pseudo-T1’ and T1-weighted images in secondary progressive multiple sclerosis , 2002, Multiple sclerosis.

[27]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[28]  James C. Gee,et al.  Spatial transformations of diffusion tensor magnetic resonance images , 2001, IEEE Transactions on Medical Imaging.

[29]  G. Barker,et al.  Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis , 1999, Neurology.

[30]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.