Motion planning in quantum control via intersection of eigenvalues

In this paper we consider the problem of inducing a transition in a controlled quantum mechanical system whose spectrum loses simplicity for some values of the control. We study the situation in which the Hamiltonian of the system is real, and we are in presence of two controls. In this case, eigenvalue crossings are generically conical. Adiabatic approximation is used to decouple a finite dimensional sub-system from the original one (usually infinite dimensional).

[1]  Claudio Altafini,et al.  Controllability of quantum mechanical systems by root space decomposition of su(N) , 2002 .

[2]  J. Swoboda Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.

[3]  J. Gauthier,et al.  Optimal control in laser-induced population transfer for two- and three-level quantum systems , 2002 .

[4]  Steffen J. Glaser,et al.  Nuclear magnetic resonance quantum computing exploiting the pure spin state of para hydrogen , 2000 .

[5]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[6]  U. Boscain,et al.  Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[7]  Domenico D'Alessandro,et al.  Optimal control of two-level quantum systems , 2001, IEEE Trans. Autom. Control..

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  Riccardo Adami,et al.  Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005 .

[10]  Mario Sigalotti,et al.  Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.

[11]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[12]  U. Boscain,et al.  NONISOTROPIC 3-LEVEL QUANTUM SYSTEMS: COMPLETE SOLUTIONS FOR MINIMUM TIME AND MINIMUM ENERGY , 2004, quant-ph/0409022.

[13]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[14]  R. Harney,et al.  Optical resonance and two-level atoms , 1978, IEEE Journal of Quantum Electronics.

[15]  Y. C. Verdière,et al.  Construction de laplaciens dont une partie finie (avec multiplicités) du spectre est donnée , 1987 .

[16]  Stefan Teufel,et al.  Adiabatic perturbation theory in quantum dynamics , 2003 .

[17]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[18]  Roger W. Brockett,et al.  The Controllability of Infinite Quantum Systems and Closed Subspace Criteria , 2006 .

[19]  Mazyar Mirrahimi,et al.  Lyapunov control of a quantum particle in a decaying potential , 2008, 0805.0910.

[20]  H. Jauslin,et al.  Control of Quantum Dynamics by Laser Pulses: Adiabatic Floquet Theory , 2003 .

[21]  U. Gaubatz,et al.  Population switching between vibrational levels in molecular beams , 1988 .

[22]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[23]  L. P. Yatsenko,et al.  Topology of adiabatic passage , 2002 .

[24]  Jean-Paul Gauthier,et al.  On the K + P Problem for a Three-Level Quantum System: Optimality Implies Resonance , 2002 .

[25]  V. Nersesyan Growth of Sobolev Norms and Controllability of the Schrödinger Equation , 2008, 0804.3982.