Structural and electronic properties of ZnO nanowires: a theoretical study

Abstract ZnO nanowires with different sizes and geometrical shapes have been studied by means of density functional theory ( DFT ) calculations. Atomic relaxation, energetic stability, and electronic properties of these nanostructures show a particular dependence on the shape of the nanowires. Our results indicate that the hexagonal shape nanostructures are more favorable than the triangular one due to lower total surface energy, whereas lattice relaxation and surface states appear to be more pronounced in the case of triangular nanowires.

[1]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[2]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[3]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[4]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[5]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[6]  Martins,et al.  Pseudopotential plane-wave calculations for ZnS. , 1991, Physical review. B, Condensed matter.

[7]  Ningsheng Xu,et al.  Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures , 2006 .

[8]  Emilio Artacho,et al.  The SIESTA method; developments and applicability , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Jinlong Yang,et al.  Piezoelectricity in ZnO nanowires: A first-principles study , 2006 .

[10]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[11]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[12]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[13]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[14]  Zhong Lin Wang,et al.  Single-crystal nanocastles of ZnO , 2006 .

[15]  Hess,et al.  Hartree-Fock study of phase changes in ZnO at high pressure. , 1993, Physical review. B, Condensed matter.

[16]  Y. Gu,et al.  Diameter dependence of the minority carrier diffusion length in individual ZnO nanowires , 2010, 1002.2812.

[17]  Min Zhou,et al.  Novel phase transformation in ZnO nanowires under tensile loading. , 2006, Physical review letters.

[18]  A. Catellani,et al.  Surface-induced polarity inversion in ZnO nanowires , 2009 .

[19]  Zhong Lin Wang,et al.  Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts , 2003 .

[20]  Density-functional study of the structure and stability of ZnO surfaces , 2002, cond-mat/0206549.

[21]  David P. Norton,et al.  Recent progress in processing and properties of ZnO , 2003 .

[22]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[23]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[24]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[25]  P. Erhart,et al.  First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects , 2006 .

[26]  John Robertson,et al.  Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals , 2010 .

[27]  J. M. Merino,et al.  Magnetic properties of ZnO nanoparticles. , 2007, Nano letters.

[28]  R. Melnik,et al.  Geometry Dependent Current-Voltage Characteristics of ZnO Nanostructures: A Combined Nonequilibrium Green’s Function and Density Functional Theory Study , 2009 .

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  Zhong Lin Wang The new field of nanopiezotronics , 2007 .

[31]  Zhong Lin Wang Nanostructures of zinc oxide , 2004 .

[32]  Shuang Li,et al.  Uniaxial strain modulated band gap of ZnO nanostructures , 2010 .

[33]  Ruiqin Q. Zhang,et al.  Density-functional theory calculations of bare and passivated triangular-shaped ZnO nanowires , 2007 .