DNA supercoiling contributes to disconnect σS accumulation from σS‐dependent transcription in Escherichia coli

Accepted 10 January, 2003. *For correspondence. E-mail clg@ibcg.biotoul.fr; Tel. ( + 33) 5 61 33 58 72; Fax ( + 33) 5 61 33 58 86. Present addresses: † Department of Biology and Biochemistry, Faculty of Life Sciences, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK. ‡ Adolf-Butenandt-Institut, Molekularbiologie, Schillerstr. 44, 80336 München, Germany. DNA supercoiling contributes to disconnect s S

[1]  D. Shuh,et al.  Characterization, HPLC method development and impurity identification for 3,4,3-LI(1,2-HOPO), a potent actinide chelator for radionuclide decorporation. , 2015, Journal of pharmaceutical and biomedical analysis.

[2]  T. Nyström,et al.  Regulation of sigma factor competition by the alarmone ppGpp. , 2002, Genes & development.

[3]  R. Burgess,et al.  Promoter recognition and discrimination by EσS RNA polymerase , 2001, Molecular microbiology.

[4]  A. Conter,et al.  Regulation of osmC Gene Expression by the Two-Component System rcsB-rcsC inEscherichia coli , 2001, Journal of bacteriology.

[5]  R. Hengge-aronis,et al.  What makes an Escherichia coli promoter σS dependent? Role of the −13/−14 nucleotide promoter positions and region 2.5 of σS , 2001 .

[6]  F. Colland,et al.  σ factor selectivity of Escherichia coli RNA polymerase: role for CRP, IHF and Lrp transcription factors , 2000, The EMBO journal.

[7]  A. Khodursky,et al.  Roles of Topoisomerases in Maintaining Steady-state DNA Supercoiling in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[8]  F. Repoila,et al.  Involvement of differential efficiency of transcription by Eσs and Eσ70 RNA polymerase holoenzymes in growth phase regulation of the Escherichia coli osmE promoter , 2000, Molecular microbiology.

[9]  Akira Ishihama,et al.  Transcriptional Organization and In Vivo Role of theEscherichia coli rsd Gene, Encoding the Regulator of RNA Polymerase Sigma D , 1999, Journal of bacteriology.

[10]  T. Nyström,et al.  Negative regulation by RpoS: a case of sigma factor competition , 1998, Molecular microbiology.

[11]  Roland Lange,et al.  Interplay between global regulators of Escherichia coli : effect of RpoS, Lrp and H‐NS on transcription of the gene osmC , 1998, Molecular microbiology.

[12]  A. Ishihama,et al.  A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Conter,et al.  Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. , 1997, Journal of molecular biology.

[14]  Richard R. Burgess,et al.  Comparative analysis of the interactions of Escherichia coli sigma S and sigma 70 RNA polymerase holoenzyme with the stationary-phase-specific bolAp1 promoter. , 1997, Biochemistry.

[15]  V. Robbe-Saule,et al.  Virulence and vaccine potential of Salmonella typhlmurium mutants deficient in the expression of the RpoS (σs) regulon , 1996, Molecular microbiology.

[16]  S. Ueda,et al.  Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions , 1996, Journal of bacteriology.

[17]  C. Chamizo,et al.  A consensus structure for σs‐dependent promoters , 1996, Molecular microbiology.

[18]  R. Hengge-aronis,et al.  Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli , 1996, Journal of bacteriology.

[19]  N. Fujita,et al.  Promoter selectivity of Escherichia coli RNA polymerase E sigma 70 and E sigma 38 holoenzymes. Effect of DNA supercoiling. , 1996, The Journal of biological chemistry.

[20]  K. Makino,et al.  Mode of promoter recognition by the Escherichia coli RNA polymerase holoenzyme containing the σs subunit: identification of the recognition sequence of the fic promoter , 1995, Molecular microbiology.

[21]  A. Ishihama,et al.  Promoter selectivity control of Escherichia coli RNA polymerase by ionic strength: differential recognition of osmoregulated promoters by EσD and EσS holoenzymes , 1995, Molecular microbiology.

[22]  S. Normark,et al.  σS‐dependent growth‐phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by σ70 in the absence of the nucleoid‐associated protein H‐NS , 1994, Molecular microbiology.

[23]  Roberto Kolter,et al.  The dps promoter is activated by OxyR during growth and by IHF and σs in stationary phase , 1994, Molecular microbiology.

[24]  W. McClure,et al.  Selective binding of Escherichia coli RNA polymerase to topoisomers of minicircles carrying the TAC16 and TAC17 promoters. , 1994, The Journal of biological chemistry.

[25]  H. Yim,et al.  Molecular characterization of the promoter of osmY, an rpoS-dependent gene , 1994, Journal of bacteriology.

[26]  Akira Ishihama,et al.  Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[27]  I. von Ossowski,et al.  KatF (sigma S) synthesis in Escherichia coli is subject to posttranscriptional regulation , 1993, Journal of bacteriology.

[28]  A. Matin,et al.  The putative sigma factor KatF is regulated posttranscriptionally during carbon starvation , 1993, Journal of bacteriology.

[29]  R. Hengge-aronis,et al.  Survival of hunger and stress: The role of rpoS in early stationary phase gene regulation in E. coli , 1993, Cell.

[30]  N. Henneberg,et al.  Osmotic regulation of rpoS-dependent genes in Escherichia coli , 1993, Journal of bacteriology.

[31]  M. Gribskov,et al.  The sigma 70 family: sequence conservation and evolutionary relationships , 1992, Journal of bacteriology.

[32]  R. Wells,et al.  Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo. , 1991, The Journal of biological chemistry.

[33]  R. Hengge-aronis,et al.  Identification of a central regulator of stationary‐phase gene expression in Escherichia coli , 1991, Molecular microbiology.

[34]  D. Lilley,et al.  Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[35]  P. Loewen,et al.  Nucleotide sequence of katF of Escherichia coli suggests KatF protein is a novel sigma transcription factor. , 1989, Nucleic acids research.

[36]  J. Gralla,et al.  KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. , 1989, The Journal of biological chemistry.

[37]  R. Wells,et al.  The B- to Z-DNA equilibrium in vivo is perturbed by biological processes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Ian R. Booth,et al.  A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli , 1988, Cell.

[39]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[40]  H. Buc,et al.  Topological unwinding of strong and weak promoters by RNA polymerase. A comparison between the lac wild-type and the UV5 sites of Escherichia coli. , 1987, Journal of molecular biology.

[41]  N. Cozzarelli,et al.  Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. , 1987, Journal of molecular biology.

[42]  D. Lilley Bacterial chromatin: A new twist to an old story , 1986, Nature.

[43]  J. Lefèvre,et al.  Effect of superhelicity on the transcription from the tet promoter of pBR322. Abortive initiation and unwinding experiments. , 1984, Nucleic acids research.

[44]  M Gribskov,et al.  Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. , 1983, Gene.

[45]  H. Buc,et al.  Is DNA unwound by the cyclic AMP receptor protein? , 1982, Nucleic acids research.

[46]  M. Débarbouillé,et al.  Dominant constitutive mutations in malT, the positive regulator gene of the maltose regulon in Escherichia coli. , 1978, Journal of molecular biology.

[47]  A. Ishihama Functional modulation of Escherichia coli RNA polymerase. , 2000, Annual review of microbiology.

[48]  R. Hengge-aronis,et al.  The role of the sigma factor sigma S (KatF) in bacterial global regulation. , 1994, Annual review of microbiology.

[49]  R. Kolter,et al.  The stationary phase of the bacterial life cycle. , 1993, Annual review of microbiology.