Vertex-colouring of 3-chromatic circulant graphs

Abstract A circulant graph C n ( a 1 , … , a k ) is a graph with n vertices { v 0 , … , v n − 1 } such that each vertex v i is adjacent to vertices v ( i + a j ) m o d n , for j = 1 , … , k . In this paper we investigate the vertex colouring problem on circulant graphs. We approach the problem in a purely combinatorial way based on an array representation and propose an exact O ( k 3 log 2 n + n ) algorithm for a subclass of 3-chromatic C n ( a 1 , … , a k ) ’s with k ≥ 2 , which are characterized in the paper.

[1]  Joseph G. Peters,et al.  Minimum chromaticity of circulant graphs , 2005, Discret. Math..

[2]  Hong-Gwa Yeh,et al.  4-Colorable 6-regular toroidal graphs , 2003, Discret. Math..

[3]  Mauro Leoncini,et al.  On the Lovász Number of Certain Circulant Graphs , 2000, CIAC.

[4]  Valentin E. Brimkov Clique, chromatic, and Lovász numbers of certain circulant graphs , 2004, Electron. Notes Discret. Math..

[5]  Alexander Rosa,et al.  The chromatic number of 5-valent circulants , 2008, Discret. Math..

[6]  Tomaz Pisanski,et al.  Computing the Diameter in Multiple-Loop Networks , 1993, J. Algorithms.

[7]  Michael O. Albertson,et al.  On Six‐Chromatic Toroidal Graphs , 1980 .

[8]  Oriol Serra,et al.  On the chromatic number of circulant graphs , 2009, Discret. Math..

[9]  Sebastiano Vigna,et al.  Hardness Results and Spectral Techniques for Combinatorial Problems on Circulant Graphs , 1998 .

[10]  Valentin E. Brimkov Algorithmic and explicit determination of the Lovász number for certain circulant graphs , 2007, Discret. Appl. Math..

[11]  Chak-Kuen Wong,et al.  A Combinatorial Problem Related to Multimodule Memory Organizations , 1974, JACM.

[12]  Mateo Valero,et al.  Discrete Optimization Problem in Local Networks and Data Alignment , 1987, IEEE Transactions on Computers.

[13]  C. Thomassen,et al.  Five-Coloring Maps on Surfaces , 1993, J. Comb. Theory, Ser. B.

[14]  Glenn G. Chappell Coloring Distance Graphs on the Integers , 1998 .

[15]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[16]  Riccardo Mariani,et al.  A Spectral Technique to Solve the Chromatic Number Problem in Circulant Graphs , 2004, ICCSA.

[17]  F. Göbel,et al.  Cyclic Graphs , 2000, Discret. Appl. Math..

[18]  Valentin E. Brimkov,et al.  Connectivity of discrete planes , 2004, Theor. Comput. Sci..

[19]  Paul Erdös,et al.  Colouring the real line , 1985, J. Comb. Theory B.

[20]  Jean-Claude Bermond,et al.  Hamiltonian decomposition of Cayley graphs of degree 4 , 1989, J. Comb. Theory, Ser. B.

[21]  Reinhard Klette,et al.  Efficient Computation of the Lovász Theta Function for a Class of Circulant Graphs , 2004, WG.

[22]  Ralph Tindell,et al.  Circulants and their connectivities , 1984, J. Graph Theory.

[23]  Gerard J. Chang,et al.  Integral distance graphs , 1997 .

[24]  Ian F. Akyildiz,et al.  Routing Algorithms for Double Loop Networks , 1992, Int. J. Found. Comput. Sci..

[25]  Clemens Heuberger,et al.  On planarity and colorability of circulant graphs , 2003, Discret. Math..

[26]  Xuding Zhu Circular chromatic number of distance graphs with distance sets of cardinality 3 , 2002 .