The ABACUS system for branch‐and‐cut‐and‐price algorithms in integer programming and combinatorial optimization

The development of new mathematical theory and its applicat ion in software systems for the solution of hard optimization problems have a long tradition in mathematical programming. In this tradition we implemented ABACUS, an object-oriented software framework for branch-and-cut-and-price algorithms for the solution of mixed integer and combinatorial optimization problems. This paper discusses some difficulties in the implementation of branch-and-cut-and-price algorithms for combinatorial optimization problems and shows how they are managed by ABACUS.

[1]  Michael J. Vilot,et al.  Standard template library , 1996 .

[2]  Martin Vingron,et al.  A polyhedral approach to RNA sequence structure alignment , 1998, RECOMB '98.

[3]  Michael Jünger,et al.  A Polyhedral Approach to the Multi-Layer Crossing Minimization Problem , 1997, GD.

[4]  Jean-Maurice Clochard,et al.  Using path inequalities in a branch and cut code for the symmetric traveling salesman problem , 1993, IPCO.

[5]  Volker Kaibel Polyhedral Combinatorics of QAPs with Less Objects than Locations , 1998 .

[6]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[7]  Petra Mutzel,et al.  Optimal Compaction of Orthogonal Grid Drawings , 1999, IPCO.

[8]  George L. Nemhauser,et al.  Functional description of MINTO : a mixed integer optimizer , 1991 .

[9]  Bernard Fortz,et al.  Design of Survivable Networks with Bounded Rings , 2000, Network Theory and Applications.

[10]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[11]  Michael Jünger,et al.  Provably good solutions for the traveling salesman problem , 1994, Math. Methods Oper. Res..

[12]  Denis Naddef,et al.  Efficient separation routines for the symmetric traveling salesman problem I: general tools and comb separation , 2002, Math. Program..

[13]  Vasek Chvátal,et al.  Edmonds polytopes and weakly hamiltonian graphs , 1973, Math. Program..

[14]  M. Padberg,et al.  Solving airline crew scheduling problems by branch-and-cut , 1993 .

[15]  Michael Jünger,et al.  Practical problem solving with cutting plane algorithms in combinatorialoptimization , 1993, Combinatorial Optimization.

[16]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[17]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[18]  Javier Esparza,et al.  Verification of Safety Properties Using Integer Programming: Beyond the State Equation , 2000, Formal Methods Syst. Des..

[19]  Egon Balas,et al.  Solving mixed 0-1programs by a lift-and-project method , 1993, SODA '93.

[20]  A. Schrijver Polyhedral combinatorics , 1996 .

[21]  Perry S. Plexico,et al.  Data abstraction and object-oriented programming in C++ , 1990 .

[22]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[23]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[24]  Bertrand Meyer,et al.  Reusable Software: The Base Object-Oriented Component Libraries , 1994 .

[25]  Petra Mutzel,et al.  An Alternative Method to Crossing Minimization on Hierarchical Graphs , 1996, GD.

[26]  Brian Foote,et al.  Designing Reusable Classes , 2001 .

[27]  Goos Kant,et al.  On an integer multicommodity flow problem from the airplane industry , 1997 .

[28]  Bjarne Stroustrup,et al.  The C++ programming language (2nd ed.) , 1991 .

[29]  Roy E. Marsten,et al.  The Design of the XMP Linear Programming Library , 1981, TOMS.

[30]  Richard M. Karp,et al.  On linear characterizations of combinatorial optimization problems , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[31]  Michael Jünger,et al.  A Branch-and-Cut Approach to Physical Mapping of Chromosomes by Unique End-Probes , 1997, J. Comput. Biol..

[32]  Petra Mutzel,et al.  Two-Layer Planarization in Graph Drawing , 1998, ISAAC.

[33]  Michael Jünger,et al.  Introduction to ABACUS - a branch-and-cut system , 1998, Oper. Res. Lett..

[34]  Petra Mutzel,et al.  The constrained crossing minimization problem: a first approach , 1999 .

[35]  Gerhard Reinelt,et al.  A Polyhedral Approach to the Feedback Vertex Set Problem , 1996, IPCO.

[36]  M. R. Rao,et al.  Odd Minimum Cut-Sets and b-Matchings , 1982, Math. Oper. Res..

[37]  Martin W. P. Savelsbergh,et al.  Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..

[38]  Gerald W. Both,et al.  Object-oriented analysis and design with applications , 1994 .

[39]  Kurt Mehlhorn,et al.  A branch-and-cut algorithm for multiple sequence alignment , 1997, RECOMB '97.

[40]  Egon Balas,et al.  Gomory cuts revisited , 1996, Oper. Res. Lett..

[41]  Michael Jünger,et al.  Relaxations of the Max Cut Problem and Computation of Spin Glass Ground States , 1998 .

[42]  G. Reinelt,et al.  Combinatorial optimization and small polytopes , 1996 .

[43]  Uwe H. Suhl,et al.  MOPS -- Mathematical optimization system , 1994 .

[44]  M. Jünger,et al.  The design of the branch and cut system ABACUS , 1997 .

[45]  Denis Naddef,et al.  Efficient separation routines for the symmetric traveling salesman problem II: separating multi handle inequalities , 2002, Math. Program..

[46]  George L. Nemhauser,et al.  Solving binary cutting stock problems by column generation and branch-and-bound , 1994, Comput. Optim. Appl..

[47]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[48]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[49]  Giovanni Rinaldi,et al.  A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems , 1991, SIAM Rev..

[50]  A. Charnes,et al.  BLENDING AVIATION GASOLINES-A STUDY IN PROGRAMMING INTERDEPENDENT ACTIVITIES IN AN INTEGRATED OIL COMPANY' , 1952 .

[51]  Gerhard Reinelt,et al.  A Cutting Plane Algorithm for the Linear Ordering Problem , 1984, Oper. Res..

[52]  Stefan Thienel,et al.  ABACUS - a branch-and-CUt system , 1995 .

[53]  Michael Jünger,et al.  On the SQAP-Polytope , 2000, SIAM J. Optim..

[54]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[55]  Michael Jünger,et al.  A branch-and-cut approach to physical mapping with end-probes , 1997, RECOMB '97.

[56]  Gerhard Reinelt,et al.  Consecutive Ones and a Betweenness Problem in Computational Biology , 1998, IPCO.

[57]  Sven de Vries,et al.  Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography , 1998, Int. J. Imaging Syst. Technol..