Garside Groups and Yang–Baxter Equation

We establish a one-to-one correspondence between a class of Garside groups admitting a certain presentation and the structure groups of non-degenerate, involutive, and braided set-theoretical solutions of the quantum Yang–Baxter equation. We also characterize indecomposable solutions in terms of Δ-pure Garside groups.

[1]  F. A. Garside,et al.  THE BRAID GROUP AND OTHER GROUPS , 1969 .

[2]  Matthieu Picantin,et al.  THE CONJUGACY PROBLEM IN SMALL GAUSSIAN GROUPS , 2001 .

[3]  Patrick Dehornoy Groupes de Garside , 2001 .

[4]  Wolfgang Rump,et al.  A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation , 2005 .

[5]  Matthieu PICANTIN AUTOMATIC STRUCTURES FOR TORUS LINK GROUPS , 2001 .

[6]  V. Drinfeld On some unsolved problems in quantum group theory , 1992 .

[7]  Bolyai János Matematikai Társulat,et al.  Algebraic theory of semigroups , 1979 .

[8]  Bestvina's Normal Form Complex and the Homology of Garside Groups , 2002, math/0202228.

[9]  Patrick Dehornoy Complete positive group presentations , 2001 .

[10]  Patrick Dehornoy Gaussian Groups are Torsion Free , 1998 .

[11]  A combinatorial approach to the set-theoretic solutions of the Yang–Baxter equation , 2004, math/0404461.

[12]  Matthieu Picantin,et al.  The Center of Thin Gaussian Groups , 2001 .

[13]  Semigroups of I-type , 2003, math/0308071.

[14]  T. Gateva-Ivanova,et al.  Semigroups ofI-Type , 1998 .

[15]  Patrick Dehornoy,et al.  Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups , 1999 .

[16]  Y. Lafont,et al.  Homology of gaussian groups , 2001, math/0111231.

[17]  Patrick Dehornoy,et al.  Braids and self-distributivity , 2000 .

[18]  Volker Gebhardt A New Approach to the Conjugacy Problem in Garside Groups , 2003 .

[19]  Travis Schedler,et al.  On set-theoretical solutions of the quantum Yang-Baxter equation , 1997 .

[20]  E. Jespers,et al.  Monoids and Groups of I-Type , 2005 .