Centrum Voor Wiskunde En Informatica Probability, Networks and Algorithms Probability, Networks and Algorithms Extrapolating and Interpolating Spatial Patterns Extrapolating and Interpolating Spatial Patterns

We discuss issues arising when a spatial pattern is observed within some bounded region of space, and one wishes to predict the process outside of this region (extrapolation) as well as to perform inference on features of the pattern that cannot be observed (interpolation). We focus on spatial cluster analysis. Here the interpolation arises from the fact that the centres of clustering are not observed. We take a Bayesian approach with a repulsive Markov prior, derive the posterior distribution of the complete data, i.e. cluster centres with associated offspring marks, and propose an adaptive coupling from the past algorithm to sample from this posterior. The approach is illustrated by means of the redwood data set (Ripley, 1977).

[1]  Charles J. Geyer,et al.  Likelihood inference for spatial point processes , 2019, Stochastic Geometry.

[2]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[3]  Roger Marshall,et al.  A Review of Methods for the Statistical Analysis of Spatial Patterns of Disease , 1991 .

[4]  Josiane Zerubia,et al.  An application of marked point processes to the extration of linear networks from images , 2002 .

[5]  A. Raftery,et al.  Detecting features in spatial point processes with clutter via model-based clustering , 1998 .

[6]  B. D. Ripley,et al.  The use of spatial models as image priors , 1991 .

[7]  A. Gelfand,et al.  Maximum-likelihood estimation for constrained- or missing-data models , 1993 .

[8]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[9]  Jens B. Lund,et al.  Bayesian analysis of spatial point patterns from noisy observations , 1999 .

[10]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[11]  van Marie-Colette Lieshout,et al.  Markov chain Monte Carlo methods for clustering of image features , 1995 .

[12]  W. Kendall,et al.  Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes , 2000, Advances in Applied Probability.

[13]  F. Kelly,et al.  A note on Strauss's model for clustering , 1976 .

[14]  Dietrich Stoyan,et al.  Statistical analysis for a class of line segment processes , 1989 .

[15]  van Mnm Marie-Colette Lieshout,et al.  Exact sampling from conditional Boolean models with applications to maximum likelihood inference , 2001 .

[16]  A. Baddeley Spatial sampling and censoring , 2019, Stochastic Geometry.

[17]  D. Binder Bayesian cluster analysis , 1978 .

[18]  George Henry Dunteman,et al.  Introduction To Multivariate Analysis , 1984 .

[19]  R. Milne,et al.  Identifiability for random translations of Poisson processes , 1970 .

[20]  B. Ripley,et al.  Markov Point Processes , 1977 .

[21]  A. G. Chessa Conditional simulation of spatial stochastic models for reservoir heterogeneity / Geconditioneerd simuleren van ruimtelijke stochastische processen voor reservoir heterogeniteit , 1995 .

[22]  C. Robert,et al.  Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .

[23]  D. J. Strauss A model for clustering , 1975 .

[24]  A. Baddeley,et al.  Nearest-Neighbour Markov Point Processes and Random Sets , 1989 .

[25]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[26]  Wilfrid S. Kendall,et al.  Perfect Simulation for the Area-Interaction Point Process , 1998 .

[27]  Jeremy S. De Bonet,et al.  Multiresolution sampling procedure for analysis and synthesis of texture images , 1997, SIGGRAPH.

[28]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[29]  B. Ripley Tests of 'Randomness' for Spatial Point Patterns , 1979 .

[30]  B. Ripley Statistical inference for spatial processes , 1990 .

[31]  Yosihiko Ogata,et al.  Comparison of Two Methods for Calculating the Partition Functions of Various Spatial Statistical Models , 2001 .

[32]  van Marie-Colette Lieshout,et al.  Stochastic geometry models in image analysis and spatial statistics , 1995 .

[33]  I. Molchanov,et al.  Clustering methods based on variational analysis in the space of measures , 2001 .

[34]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[35]  van Marie-Colette Lieshout,et al.  Markov Point Processes and Their Applications , 2000 .

[36]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[37]  P. Blackwell,et al.  Bayesian Inference for a Random Tessellation Process , 2001, Biometrics.

[38]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[39]  P. Clifford,et al.  Point-based polygonal models for random graphs , 1993, Advances in Applied Probability.

[40]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[41]  Jens B. Lund,et al.  Perfect Simulation of Point Processes Given Noisy Observations , 2001 .

[42]  G. Matheron Random Sets and Integral Geometry , 1976 .

[43]  Wilfrid S. Kendall,et al.  Perfect simulation in stochastic geometry , 1999, Pattern Recognit..

[44]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[45]  M LieshoutvanM.N.,et al.  The Candy model revisited: Markov properties and inference , 2001 .

[46]  A. Baddeley,et al.  Stochastic geometry models in high-level vision , 1993 .

[47]  N. Hjort,et al.  Topics in Spatial Statistics , 1992 .

[48]  Andre G. Journel,et al.  Conditional Indicator Simulation: Application to a Saskatchewan uranium deposit , 1984 .

[49]  Peter J. Diggle,et al.  On Parameter Estimation for Spatial Point Processes , 1978 .

[50]  A. Journel Geostatistics for Conditional Simulation of Ore Bodies , 1974 .

[51]  John S. Rowlinson,et al.  New Model for the Study of Liquid–Vapor Phase Transitions , 1970 .

[52]  Adrian Baddeley,et al.  Markov properties of cluster processes , 1996, Advances in Applied Probability.

[53]  Rolf-Dieter Reiss,et al.  A Course on Point Processes , 1992 .

[54]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[55]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[56]  A. Baddeley,et al.  Area-interaction point processes , 1993 .