Experimental study of geometric t-spanners
暂无分享,去创建一个
[1] Giri Narasimhan,et al. New sparseness results on graph spanners , 1992, SCG '92.
[2] Jeffrey S. Salowe. Constructing multidimensional spanner graphs , 1991, Int. J. Comput. Geom. Appl..
[3] Giri Narasimhan,et al. New sparseness results on graph spanners , 1995, Int. J. Comput. Geom. Appl..
[4] Michiel H. M. Smid,et al. Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[5] Joachim Gudmundsson,et al. Approximate distance oracles for geometric graphs , 2002, SODA '02.
[6] Xiang-Yang Li,et al. Geometric Spanners for Wireless Ad Hoc Networks , 2003, IEEE Trans. Parallel Distributed Syst..
[7] Andrew Chi-Chih Yao,et al. On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..
[8] Gonzalo Navarro,et al. t-Spanners as a Data Structure for Metric Space Searching , 2002, SPIRE.
[9] Michiel Smid,et al. Closest-Point Problems in Computational Geometry , 2000, Handbook of Computational Geometry.
[10] J. Mark Keil,et al. Approximating the Complete Euclidean Graph , 1988, Scandinavian Workshop on Algorithm Theory.
[11] Xiang-Yang Li,et al. Geometric spanners for wireless ad hoc networks , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.
[12] Arthur M. Farley,et al. Spanners and message distribution in networks , 2004, Discret. Appl. Math..
[13] Giri Narasimhan,et al. A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..
[14] Martin Zachariasen,et al. Construction of Minimum-Weight Spanners , 2004, ESA.
[15] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[16] Giri Narasimhan,et al. Improved Algorithms for Constructing Fault-Tolerant Spanners , 2001, Algorithmica.
[17] Joachim Gudmundsson,et al. Ordered theta graphs , 2004, CCCG.
[18] Kenneth L. Clarkson,et al. Approximation algorithms for shortest path motion planning , 1987, STOC.
[19] Robert L. Scot Drysdale,et al. A comparison of sequential Delaunay triangulation algorithms , 1995, SCG '95.
[20] Andrzej Lingas,et al. Fast Approximation Schemes for Euclidean Multi-connectivity Problems , 2000, ICALP.
[21] Carl Gutwin,et al. Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..
[22] Giri Narasimhan,et al. A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.
[23] Gonzalo Navarro,et al. Practical Constraction of Metric t-Spanners , 2003, ALENEX.
[24] Joachim Gudmundsson,et al. Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..
[25] Satish Rao,et al. Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.
[26] Joachim Gudmundsson,et al. Approximate Distance Oracles Revisited , 2002, ISAAC.
[27] Giri Narasimhan,et al. Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.
[28] José Soares,et al. Approximating Euclidean distances by small degree graphs , 1994, Discret. Comput. Geom..
[29] Joachim Gudmundsson,et al. On Algorithms for Computing the Diameter of a t-Spanner , 2006 .
[30] S. Rao Kosaraju,et al. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.
[31] Andrzej Lingas,et al. Minimum Spanning Trees , 2022 .
[32] Michiel H. M. Smid,et al. Computing the Greedy Spanner in Near-Quadratic Time , 2008, SWAT.
[33] Helen C. Purchase,et al. Which Aesthetic has the Greatest Effect on Human Understanding? , 1997, GD.
[34] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[35] Pravin M. Vaidya,et al. A sparse graph almost as good as the complete graph on points inK dimensions , 1991, Discret. Comput. Geom..
[36] David Eppstein,et al. Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.
[37] Kurt Mehlhorn,et al. LEDA: a platform for combinatorial and geometric computing , 1997, CACM.
[38] Barun Chandra. Constructing Sparse Spanners for Most Graphs in Higher Dimensions , 1994, Inf. Process. Lett..
[39] Robert L. Scot Drysdale,et al. A Comparison of Sequential Delaunay Triangulation Algorithms , 1997, Comput. Geom..
[40] Michiel H. M. Smid,et al. Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..
[41] Joachim Gudmundsson,et al. Improved Greedy Algorithms for Constructing Sparse Geometric Spanners , 2000, SWAT.
[42] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..