Invariant image object recognition using mixture densities

We present a mixture density based approach to invariant image object recognition. We start our experiments using Gaussian mixture densities within a Bayesian classifier. Invariance to affine transformations is achieved by replacing the Euclidean distance with SIMARD's tangent distance. We propose an approach to estimating covariance matrices with respect to image invariances as well as a new classifier combination scheme, called the virtual test sample method. On the US Postal Service handwritten digits recognition task (USPS), we obtain an excellent classification error rate of 2.7%, using the original USPS training and test sets.

[1]  Bernhard Schölkopf,et al.  Prior Knowledge in Support Vector Kernels , 1997, NIPS.

[2]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[3]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[4]  Maurice Milgram,et al.  Transformation Invariant Autoassociation with Application to Handwritten Character Recognition , 1994, NIPS.

[5]  Yann LeCun,et al.  Transformation Invariance in Pattern Recognition-Tangent Distance and Tangent Propagation , 1996, Neural Networks: Tricks of the Trade.

[6]  Geoffrey E. Hinton,et al.  Recognizing Handwritten Digits Using Mixtures of Linear Models , 1994, NIPS.

[7]  Vladimir Cherkassky,et al.  The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.

[8]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Hermann Ney,et al.  Discriminative Training of Gaussian Mixtures for Image Object Recognition , 1999, DAGM-Symposium.

[10]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Bernt Schiele,et al.  Probabilistic object recognition using multidimensional receptive field histograms , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[12]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[13]  Hermann Ney,et al.  A Mixture Density Based Approach to Object Recognition for Image Retrieval , 2000, RIAO.

[14]  Hermann Ney,et al.  Experiments with an extended tangent distance , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[15]  Yann LeCun,et al.  Efficient Pattern Recognition Using a New Transformation Distance , 1992, NIPS.

[16]  Harris Drucker,et al.  Boosting Performance in Neural Networks , 1993, Int. J. Pattern Recognit. Artif. Intell..

[17]  Patrice Y. Simard,et al.  Learning Prototype Models for Tangent Distance , 1994, NIPS.