Some Insights Into Computational Models of (Patho)physiological Brain Activity

The amount of experimental data concerning physiology and anatomy of the nervous system is growing very fast, challenging our capacity to make comprehensive syntheses of the plethora of data available. Computer models of neuronal networks provide useful tools to construct such syntheses. They can be used to interpret experimental data, generate experimentally testable predictions, and formulate new hypotheses regarding the function of the neural systems. Models can also act as a bridge between different levels of neuronal organization. The ultimate aim of computational neuroscience is to provide a link between behavior and underlying neural mechanisms. Depending on the specific aim of the model, there are different levels of neuronal organization at which the model can be set. Models are constructed at the microscopic (molecular and cellular), macroscopic level (local populations or systems), or dynamical systems level. Apart from purely computational models, hybrid networks are being developed in which biological neurons are connected in vitro to computer simulated neurons. Also, neuromorphic systems are recently being created using silicon chips that mimic computational operations in the brain. This paper reviews various computational models of the brain and insights obtained through their simulations.

[1]  Maxim Bazhenov,et al.  Cortical hyperpolarization-activated depolarizing current takes part in the generation of focal paroxysmal activities , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  L. Borg-Graham Biophysical mechanisms in neuronal modeling. , 2002 .

[3]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[4]  D. Contreras,et al.  Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. , 1998, Journal of neurophysiology.

[5]  C. Bédard,et al.  Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. , 2003, Biophysical journal.

[6]  D M Durand,et al.  Axonal stimulation under MRI magnetic field z gradients: A modeling study , 1997, Magnetic resonance in medicine.

[7]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[8]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[9]  T. Sejnowski,et al.  Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. , 1996, Journal of neurophysiology.

[10]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[11]  T. Sejnowski,et al.  A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. , 1993, Biophysical journal.

[12]  P. Jonas,et al.  Distal initiation and active propagation of action potentials in interneuron dendrites. , 2000, Science.

[13]  W J Freeman,et al.  Patterns of variation in waveform of averaged evoked potentials from prepyriform cortex of cats. , 1968, Journal of neurophysiology.

[14]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[15]  L. Kristiansson,et al.  Performance of a model for a local neuron population , 1978, Biological Cybernetics.

[16]  Davide Badoni,et al.  Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI Implementation , 2000, Neural Computation.

[17]  Piotr J. Franaszczuk,et al.  Inhibition modifies the effects of slow calcium-activated potassium channels on epileptiform activity in a neuronal network model , 2005, Biological Cybernetics.

[18]  G. Bergey,et al.  External excitatory stimuli can terminate bursting in neural network models , 2003, Epilepsy Research.

[19]  C. Mead,et al.  Neuromorphic analogue VLSI. , 1995, Annual review of neuroscience.

[20]  Erik De Schutter,et al.  A consumer guide to neuronal modeling software , 1992, Trends in Neurosciences.

[21]  Eve Marder,et al.  Spike initiation and propagation on axons with slow inward currents , 2004, Biological Cybernetics.

[22]  M. Hines,et al.  Efficient computation of branched nerve equations. , 1984, International journal of bio-medical computing.

[23]  G. Shepherd,et al.  Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. , 1968, Journal of neurophysiology.

[24]  Ann M. Castelfranco,et al.  Corrections for space-clamp errors in measured parameters of voltage-dependent conductances in a cylindrical neurite , 2004, Biological Cybernetics.

[25]  Márcio O. Costa,et al.  Design for a Brain Revisited: The Neuromorphic Design and Functionality of the Interactive Space 'Ada' , 2003, Reviews in the neurosciences.

[26]  W. Rall Electrophysiology of a dendritic neuron model. , 1962, Biophysical journal.

[27]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[28]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[29]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[30]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[31]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[32]  B. Litt,et al.  Long-range temporal correlations in epileptogenic and non-epileptogenic human hippocampus , 2004, Neuroscience.

[33]  Wolfgang Maass,et al.  Dynamic Stochastic Synapses as Computational Units , 1997, Neural Computation.

[34]  D. Contreras,et al.  Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. , 1997, Journal of neurophysiology.

[35]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[36]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[37]  Gustavo Deco,et al.  Large-scale neural model for visual attention: integration of experimental single-cell and fMRI data. , 2002, Cerebral cortex.

[38]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[39]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[40]  J. White,et al.  Interactions between Distinct GABAA Circuits in Hippocampus , 2000, Neuron.

[41]  W. Rall Membrane time constant of motoneurons. , 1957, Science.

[42]  A. Destexhe Spike-and-Wave Oscillations Based on the Properties of GABAB Receptors , 1998, The Journal of Neuroscience.

[43]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[44]  J I Gold,et al.  A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[45]  I Segev,et al.  Untangling dendrites with quantitative models. , 2000, Science.

[46]  Terrence J. Sejnowski,et al.  An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding , 1994, Neural Computation.

[47]  Andrea Hasenstaub,et al.  Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. , 2003, Cerebral cortex.

[48]  E De Schutter,et al.  Using realistic models to study synaptic integration in cerebellar Purkinje cells. , 1999, Reviews in the neurosciences.

[49]  G. Somjen,et al.  Conditions for the triggering of spreading depression studied with computer simulations. , 2002, Journal of neurophysiology.

[50]  Michael A. Arbib,et al.  The Neural Simulation Language: A System for Brain Modeling , 2002 .

[51]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm. , 1982, Bulletin of mathematical biology.

[52]  A. Hodgkin,et al.  The electrical constants of a crustacean nerve fibre , 1946, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[53]  Peter Van Hese,et al.  Dynamics of epileptic phenomena determined from statistics of ictal transitions , 2006, IEEE Transactions on Biomedical Engineering.

[54]  Walter J. Freeman,et al.  Asymmetric sigmoid non-linearity in the rat olfactory system , 1991, Brain Research.

[55]  Paul D. Bourke,et al.  Synchronous oscillation in the cerebral cortex and object coherence: simulation of basic electrophysiological findings , 2000, Biological Cybernetics.

[56]  James J. Wright,et al.  Propagation and stability of waves of electrical activity in the cerebral cortex , 1997 .

[57]  Catherine M Lloyd,et al.  CellML: its future, present and past. , 2004, Progress in biophysics and molecular biology.

[58]  X. Wang Multiple dynamical modes of thalamic relay neurons: Rhythmic bursting and intermittent phase-locking , 1994, Neuroscience.

[59]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[60]  Jerome Engel,et al.  Outcome with respect to epileptic seizures. , 1993 .

[61]  J. Rinzel,et al.  Propagation of spindle waves in a thalamic slice model. , 1996, Journal of neurophysiology.

[62]  M. Hasselmo,et al.  Cholinergic modulation of cortical oscillatory dynamics. , 1995, Journal of neurophysiology.

[63]  Roger D. Traub,et al.  A Model of High-Frequency Ripples in the Hippocampus Based on Synaptic Coupling Plus Axon–Axon Gap Junctions between Pyramidal Neurons , 2000, The Journal of Neuroscience.

[64]  Mark F. Bear,et al.  A Unified Model of Calcium Dependent Synaptic Plasticity , 2001 .

[65]  Christof Koch,et al.  Experimentalists and modelers: can we all just get along? , 1992, Trends in Neurosciences.

[66]  Houman Khosravani,et al.  The control of seizure-like activity in the rat hippocampal slice. , 2003, Biophysical journal.

[67]  T. Sejnowski,et al.  Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons , 2001, Neuroscience.

[68]  M. Lindenmo,et al.  Review of the types, properties, advantages, and latest developments in insulating coatings on nonoriented electrical steels , 2001 .

[69]  R. Traub,et al.  Neuronal networks for induced ‘40 Hz’ rhythms , 1996, Trends in Neurosciences.

[70]  R. Silberstein,et al.  Steady-state visual evoked potentials and travelling waves , 2000, Clinical Neurophysiology.

[71]  L. Cooper,et al.  Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[72]  G Pfurtscheller,et al.  Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[73]  Stiliyan Kalitzin,et al.  Self-organized dynamics in plastic neural networks: bistability and coherence , 2000, Biological Cybernetics.

[74]  M. Sansom,et al.  Lipid-protein interactions of integral membrane proteins: a comparative simulation study. , 2004, Biophysical journal.

[75]  Stiliyan Kalitzin,et al.  Dynamical diseases of brain systems: different routes to epileptic seizures , 2003, IEEE Transactions on Biomedical Engineering.

[76]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm , 1982 .

[77]  P. Montague,et al.  Extracellular calcium depletion as a mechanism of short-term synaptic depression. , 2001, Journal of neurophysiology.

[78]  Paul L. Nunez,et al.  A Study of Origins of the Time Dependencies of Scalp EEG: I - Theoretical Basis , 1981, IEEE Transactions on Biomedical Engineering.

[79]  A. Hodgkin,et al.  nerve and its application to conduction and excitation in A quantitative description of membrane current , 2007 .

[80]  R Meddis,et al.  Analog very large-scale integrated (VLSI) implementation of a model of amplitude-modulation sensitivity in the auditory brainstem. , 1999, The Journal of the Acoustical Society of America.

[81]  Elizabeth Thomas,et al.  Increased Synchrony with Increase of a Low-Threshold Calcium Conductance in a Model Thalamic Network: A Phase-Shift Mechanism , 2000, Neural Computation.

[82]  M. Hasselmo,et al.  An integrate-and-fire model of prefrontal cortex neuronal activity during performance of goal-directed decision making. , 2005, Cerebral cortex.

[83]  J. Bower,et al.  Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. , 1992, Journal of neurophysiology.

[84]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[85]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[86]  J. Wu Microscopic model for selective permeation in ion channels. , 1991, Biophysical journal.

[87]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[88]  F. L. D. Silva,et al.  Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network , 2004, Neuroscience.

[89]  R. Traub,et al.  Model of the origin of rhythmic population oscillations in the hippocampal slice. , 1989, Science.

[90]  D. Liley,et al.  Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons. , 1999, Network.

[91]  Peter Fromherz,et al.  The Neuron-Semiconductor Interface , 2005 .

[92]  J. Rinzel,et al.  Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. , 1994, Journal of neurophysiology.

[93]  E. Rolls,et al.  Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. , 2004, Cerebral cortex.

[94]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[95]  P. Robinson,et al.  Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  A. Gutierrez-Galvez,et al.  Coherent oscillations as a neural code in a model of the olfactory system , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[97]  Tobi Delbrück,et al.  Orientation-Selective aVLSI Spiking Neurons , 2001, NIPS.

[98]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[99]  J. Eccles,et al.  The electrical properties of the motoneurone membrane , 1955, The Journal of physiology.

[100]  Alain Destexhe,et al.  LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations , 2001, Neurocomputing.

[101]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[102]  W. Rall Theory of Physiological Properties of Dendrites , 1962, Annals of the New York Academy of Sciences.

[103]  F. Saraga,et al.  Active dendrites and spike propagation in multicompartment models of oriens‐lacunosum/moleculare hippocampal interneurons , 2003, The Journal of physiology.

[104]  T. H. Brown,et al.  Biophysical model of a Hebbian synapse. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[105]  S. Grossberg,et al.  Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. , 2003, Cerebral cortex.

[106]  F. H. Lopes da Silva,et al.  Cortical Focus Drives Widespread Corticothalamic Networks during Spontaneous Absence Seizures in Rats , 2002, The Journal of Neuroscience.

[107]  James J. Wright,et al.  Dynamics of the brain at global and microscopic scales: Neural networks and the EEG , 1996, Behavioral and Brain Sciences.

[108]  T. J. Sejnowski,et al.  Self–sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials , 1999, Nature Neuroscience.

[109]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[110]  DeÂpartment de Physiologie Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents ? , 1999 .

[111]  J. Rinzel,et al.  Spindle rhythmicity in the reticularis thalami nucleus: Synchronization among mutually inhibitory neurons , 1993, Neuroscience.

[112]  L. Cooper,et al.  A unified model of NMDA receptor-dependent bidirectional synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[113]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[114]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[115]  G. Buzsáki,et al.  Computer simulation of carbachol‐driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus. , 1992, The Journal of physiology.

[116]  D. Spencer,et al.  Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination , 1993, Annals of neurology.

[117]  Tobi Delbrück,et al.  A silicon early visual system as a model animal , 2004, Vision Research.

[118]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[119]  Mark Farrant,et al.  Maturation of EPSCs and Intrinsic Membrane Properties Enhances Precision at a Cerebellar Synapse , 2003, The Journal of Neuroscience.

[120]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[121]  A. Hodgkin,et al.  The effect of temperature on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[122]  Giulio Tononi,et al.  Modeling sleep and wakefulness in the thalamocortical system. , 2005, Journal of neurophysiology.

[123]  C. Colbert,et al.  Ion channel properties underlying axonal action potential initiation in pyramidal neurons , 2002, Nature Neuroscience.

[124]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[125]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[126]  R. Llinás,et al.  Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. , 1979, Journal of neurophysiology.

[127]  J. Cooley,et al.  Action potential of the motorneuron , 1973 .

[128]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[129]  R. Traub Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior , 1979, Brain Research.

[130]  W. Rall Time constants and electrotonic length of membrane cylinders and neurons. , 1969, Biophysical journal.

[131]  Eve Marder,et al.  The dynamic clamp comes of age , 2004, Trends in Neurosciences.

[132]  John Rinzel,et al.  Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons , 2004, Journal of Computational Neuroscience.

[133]  W. Freeman,et al.  THE ELECTRICAL ACTIVITY OF A PRIMARY SENSORY CORTEX: ANALYSIS OF EEG WAVES. , 1963, International review of neurobiology.

[134]  R. Mattson,et al.  Characteristics of medial temporal lobe epilepsy: II. Interictal and ictal scalp electroencephalography, neuropsychological testing, neuroimaging, surgical results, and pathology , 1993, Annals of neurology.

[135]  Carson C. Chow,et al.  Spontaneous action potentials due to channel fluctuations. , 1996, Biophysical journal.

[136]  J. Rinzel,et al.  Propagating activity patterns in large-scale inhibitory neuronal networks. , 1998, Science.

[137]  E Marder,et al.  From biophysics to models of network function. , 1998, Annual review of neuroscience.

[138]  H. Liljenström,et al.  Spontaneously active cells induce state transitions in a model of olfactory cortex. , 2001, Bio Systems.

[139]  T. Sejnowski,et al.  Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity , 2003, Neuroscience.

[140]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[141]  J. Rinzel,et al.  Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[142]  Peter A. Robinson,et al.  Unified neurophysical model of EEG spectra and evoked potentials , 2002, Biological Cybernetics.

[143]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[144]  Nancy Kopell,et al.  Alpha-Frequency Rhythms Desynchronize over Long Cortical Distances: A Modeling Study , 2000, Journal of Computational Neuroscience.

[145]  Sandro Romani,et al.  Learning in realistic networks of spiking neurons and spike‐driven plastic synapses , 2005, The European journal of neuroscience.

[146]  R. Traub Simulation of intrinsic bursting in CA3 hippocampal neurons , 1982, Neuroscience.

[147]  Oliver Beckstein,et al.  Liquid–vapor oscillations of water in hydrophobic nanopores , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[148]  E. Marder,et al.  Plasticity in single neuron and circuit computations , 2004, Nature.

[149]  Bruce E. Shapiro,et al.  Osmotic Forces and Gap Junctions in Spreading Depression: A Computational Model , 2004, Journal of Computational Neuroscience.

[150]  G. Somjen,et al.  Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. , 2000, Journal of neurophysiology.

[151]  Pei Tang,et al.  Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: The implication of molecular mechanisms of general anesthesia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[152]  T J Sejnowski,et al.  In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[153]  L D Iasemidis,et al.  Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. , 1997, Electroencephalography and clinical neurophysiology.

[154]  Paul L. Nunez,et al.  Generation of human EEG by a combination of long and short range neocortical interactions , 2005, Brain Topography.

[155]  P. Montague,et al.  Dendritic spikes and their influence on extracellular calcium signaling. , 2000, Journal of neurophysiology.

[156]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[157]  J. Eccles,et al.  The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post‐synaptic potential , 1955, The Journal of physiology.

[158]  Christopher J. Bishop,et al.  Pulsed Neural Networks , 1998 .

[159]  David T. J. Liley,et al.  Simulation of electrocortical waves , 1995, Biological Cybernetics.

[160]  Fiona E. N. LeBeau,et al.  Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. , 2005, Journal of neurophysiology.

[161]  Z Li,et al.  Contextual influences in V1 as a basis for pop out and asymmetry in visual search. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[162]  Nicolas Brunel,et al.  Dynamics and plasticity of stimulus-selective persistent activity in cortical network models. , 2003, Cerebral cortex.

[163]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. , 2003, Journal of neurophysiology.

[164]  Paul L. Nunez,et al.  A Study of Origins of the Time Dependencies of Scalp EEG: II-Experimental Support of Theory , 1981, IEEE Transactions on Biomedical Engineering.

[165]  Ann M. Castelfranco,et al.  Simulations of Voltage Clamping Poorly Space-Clamped Voltage-Dependent Conductances in a Uniform Cylindrical Neurite , 2003, Journal of Computational Neuroscience.

[166]  R. Traub,et al.  Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. , 2003, Journal of neurophysiology.

[167]  Hannah Monyer,et al.  Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[168]  Alain Destexhe,et al.  Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex , 2000, Journal of Physiology-Paris.

[169]  H. Abarbanel,et al.  Dynamical model of long-term synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[170]  R. Traub,et al.  Model of synchronized epileptiform bursts induced by high potassium in CA3 region of rat hippocampal slice. Role of spontaneous EPSPs in initiation. , 1990, Journal of neurophysiology.

[171]  N. Kopell,et al.  Functional reorganization in thalamocortical networks: transition between spindling and delta sleep rhythms. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[172]  P. Robinson,et al.  Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[173]  P. Fromherz,et al.  Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus , 2004, The European journal of neuroscience.