Convergence of mimetic finite difference discretizations of the diffusion equation
暂无分享,去创建一个
J. David Moulton | Markus Berndt | Konstantin Lipnikov | Mikhail J. Shashkov | M. Shashkov | J. Moulton | K. Lipnikov | M. Berndt
[1] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[2] Mikhail Shashkov,et al. Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .
[3] M. Shashkov,et al. A Local Support-Operators Diffusion Discretization Scheme for Quadrilateralr-zMeshes , 1998 .
[4] J. M. Hyman,et al. Mimetic Finite Difference Methods for Maxwell's Equations and the Equations of Magnetic Diffusion , 2001 .
[5] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[6] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[7] M. Shashkov,et al. The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .
[8] Jian Shen. Mixed Finite Element Methods On Distorted Rectangular Grids , 1994 .
[9] Mikhail Shashkov,et al. A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .
[10] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[11] M. Shashkov,et al. A Local Support-Operators Diffusion Discretization Scheme for Hexahedral Meshes , 2001 .
[12] R. R. P. Van Nooyen. An improved accuracy version of the mixed finite-element method for a second-order elliptic equation , 1991 .