Electric-double-layer transistors for synaptic devices and neuromorphic systems

Compared with the traditional von Neumann architecture, neural systems have many distinctive properties including parallelism, low-power consumption, fault tolerance, self-learning, and robustness. Inspired by biological neural computing, neuromorphic systems may open up new paradigms to deal with complicated problems such as pattern recognition and classification, bipedal locomotion controlling, and decision making. Although two-terminal memristors can perform some basic synaptic and neural functions, our human brain contains many more synapses than neurons. This fact suggests that multi-terminal devices are more favourable for complex neural network emulation. In recent years, multi-terminal electric-double-layer transistors (EDLTs) based on interfacial ion-modulation have attracted significant attention in mimicking synaptic dynamic plasticity and neural functions. In this article, we will give a review of the recent progress and major trends in the field of EDLTs for synaptic devices and neuromorphic systems. Starting with a brief introduction of synaptic plasticity and neural functions in biological neural systems and electric-double-layer (EDL) modulation, we review the advances in the field of synaptic functions realized by EDLTs. At last, some of the challenges for the ultimate goal of brain-like computation and the possible solutions are also listed.

[1]  Qing Wan,et al.  Artificial synapse network on inorganic proton conductor for neuromorphic systems. , 2014, Nature communications.

[2]  Yang Hui Liu,et al.  Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors , 2015, Scientific Reports.

[3]  L. Zhu,et al.  Humidity-Dependent Synaptic Plasticity for Proton Gated Oxide Synaptic Transistor , 2017, IEEE Electron Device Letters.

[4]  Nasim Annabi,et al.  Realization of tunable artificial synapse and memory based on amorphous oxide semiconductor transistor , 2017, Scientific Reports.

[5]  G. Malliaras,et al.  Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors , 2015, Advanced materials.

[6]  Yuejin Zhu,et al.  Short-Term Synaptic Plasticity Mimicked on Ionic/Electronic Hybrid Oxide Synaptic Transistor Gated by Nanogranular SiO2 Films , 2014 .

[7]  W. Maass,et al.  State-dependent computations: spatiotemporal processing in cortical networks , 2009, Nature Reviews Neuroscience.

[8]  G. Laurent,et al.  Computation of Object Approach by a Wide-Field, Motion-Sensitive Neuron , 1999, The Journal of Neuroscience.

[9]  Masashi Kawasaki,et al.  Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films , 2010 .

[10]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[11]  K. Awaga,et al.  Ambipolar Carrier Injections Governed by Electrochemical Potentials of Ionic Liquids in Electric-Double-Layer Thin-Film Transistors of Lead- and Titanyl-Phthalocyanine , 2013 .

[12]  Hongtao Yuan,et al.  High‐Density Carrier Accumulation in ZnO Field‐Effect Transistors Gated by Electric Double Layers of Ionic Liquids , 2009 .

[13]  Gradient oxygen modulation for junctionless electric-double-layer IZO-based synaptic transistors , 2014, 2014 International Symposium on Next-Generation Electronics (ISNE).

[14]  Yong Chen,et al.  Configurable Neural Phase Shifter With Spike-Timing-Dependent Plasticity , 2010, IEEE Electron Device Letters.

[15]  Li Qiang Zhu,et al.  Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors. , 2016, ACS applied materials & interfaces.

[16]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.

[17]  A. S. Dhoot,et al.  Increased Tc in Electrolyte‐Gated Cuprates , 2010, Advanced materials.

[18]  Shimpei Ono,et al.  High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids , 2008 .

[19]  Shimeng Yu,et al.  A Low Energy Oxide‐Based Electronic Synaptic Device for Neuromorphic Visual Systems with Tolerance to Device Variation , 2013, Advanced materials.

[20]  Wulfram Gerstner,et al.  A History of Spike-Timing-Dependent Plasticity , 2011, Front. Syn. Neurosci..

[21]  Y. Dan,et al.  Spike timing-dependent plasticity: from synapse to perception. , 2006, Physiological reviews.

[22]  Qing Wan,et al.  Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics. , 2014, Nanoscale.

[23]  Gayle M. Wittenberg,et al.  Spike Timing Dependent Plasticity: A Consequence of More Fundamental Learning Rules , 2010, Front. Comput. Neurosci..

[24]  A. Triller,et al.  The Dynamic Synapse , 2013, Neuron.

[25]  Hongliang Zhang,et al.  Extended-gate-type IGZO electric-double-layer TFT immunosensor with high sensitivity and low operation voltage , 2016 .

[26]  Jia Sun,et al.  Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature , 2009 .

[27]  Hongtao Yuan,et al.  Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. , 2011, Nano letters.

[28]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[29]  M. Bear,et al.  A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity , 2011, Proceedings of the National Academy of Sciences.

[30]  Shimeng Yu,et al.  Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. , 2014, ACS nano.

[31]  You Zhou,et al.  Mott Memory and Neuromorphic Devices , 2015, Proceedings of the IEEE.

[32]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[33]  Hongtao Yuan,et al.  Discovery of superconductivity in KTaO₃ by electrostatic carrier doping. , 2011, Nature nanotechnology.

[34]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[35]  Johannes J. Letzkus,et al.  Dendritic Synapse Location and Neocortical Spike-Timing-Dependent Plasticity , 2010, Front. Syn. Neurosci..

[36]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[37]  A. Morpurgo,et al.  Tunable Fröhlich polarons in organic single-crystal transistors , 2006, Nature materials.

[38]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[39]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[40]  John von Neumann,et al.  First draft of a report on the EDVAC , 1993, IEEE Annals of the History of Computing.

[41]  Aixia Lu,et al.  Microporous SiO2 with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors , 2009 .

[42]  Ling-an Kong,et al.  Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors , 2017 .

[43]  Yi Shi,et al.  Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films , 2016 .

[44]  Junliang Yang,et al.  Multi-gate organic neuron transistors for spatiotemporal information processing , 2017 .

[45]  Jin Jang,et al.  High mobility organic transistor patterned by the shadow-mask with all structure on a plastic substrate , 2007 .

[46]  D V Buonomano,et al.  Decoding Temporal Information: A Model Based on Short-Term Synaptic Plasticity , 2000, The Journal of Neuroscience.

[47]  Young Sun,et al.  A Synaptic Transistor based on Quasi‐2D Molybdenum Oxide , 2017, Advanced materials.

[48]  Qing Wan,et al.  Laterally Coupled Synaptic Transistors Gated by Proton Conducting Sodium Alginate Films , 2014, IEEE Electron Device Letters.

[49]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[50]  J. Robertson,et al.  High-K materials and metal gates for CMOS applications , 2015 .

[51]  Dharmendra S. Modha,et al.  The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[52]  E. Fortune,et al.  Short-term synaptic plasticity as a temporal filter , 2001, Trends in Neurosciences.

[53]  George G. Malliaras,et al.  Orientation selectivity with organic photodetectors and an organic electrochemical transistor , 2016 .

[54]  Li Qiang Zhu,et al.  Mixed protonic and electronic conductors hybrid oxide synaptic transistors , 2017 .

[55]  Rui Dong,et al.  Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems , 2017, Journal of vacuum science and technology. B, Nanotechnology & microelectronics : materials, processing, measurement, & phenomena : JVST B.

[56]  Tian-Ling Ren,et al.  Top-Gate Electric-Double-Layer IZO-Based Synaptic Transistors for Neuron Networks , 2017, IEEE Electron Device Letters.

[57]  Yasumitsu Miyata,et al.  Tunable Carbon Nanotube Thin‐Film Transistors Produced Exclusively via Inkjet Printing , 2010, Advanced materials.

[58]  Masashi Kawasaki,et al.  Field-Induced Superconductivity in Electric Double Layer Transistors , 2014 .

[59]  E. Fortune,et al.  Short-Term Synaptic Plasticity Contributes to the Temporal Filtering of Electrosensory Information , 2000, The Journal of Neuroscience.

[60]  A. Song,et al.  Oxide-Based Electric-Double-Layer Thin-Film Transistors on a Flexible Substrate , 2017, IEEE Electron Device Letters.

[61]  Qing Wan,et al.  Synaptic Behaviors Mimicked in Flexible Oxide-Based Transistors on Plastic Substrates , 2013, IEEE Electron Device Letters.

[62]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[63]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[64]  Jiyoul Lee,et al.  High carrier densities achieved at low voltages in Ambipolar PbSe nanocrystal thin-film transistors. , 2009, Nano letters.

[65]  Li Qiang Zhu,et al.  Multi-gate synergic modulation in laterally coupled synaptic transistors , 2015 .

[66]  X. Crispin,et al.  Controlling the dimensionality of charge transport in organic thin-film transistors , 2011, Proceedings of the National Academy of Sciences.

[67]  A. Shen,et al.  A spiking neuron circuit based on a carbon nanotube transistor , 2012, Nanotechnology.

[68]  K. Awaga,et al.  Ionic-Liquid Component Dependence of Carrier Injection and Mobility for Electric-Double-Layer Organic Thin-Film Transistors , 2012 .

[69]  K. Martin,et al.  The Cell Biology of Synaptic Plasticity , 2011, Science.

[70]  P. Schwindt,et al.  Synaptic depression in the localization of sound , 2003, Nature.

[71]  Narayan Srinivasa,et al.  Programming Time-Multiplexed Reconfigurable Hardware Using a Scalable Neuromorphic Compiler , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[72]  Dominique Vuillaume,et al.  Electrolyte-gated organic synapse transistor interfaced with neurons , 2016, 1608.01191.

[73]  Guodong Wu,et al.  Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates , 2014, Nanotechnology.

[74]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[75]  T. S. Bhatti,et al.  A review on electrochemical double-layer capacitors , 2010 .

[76]  Qing Wan,et al.  Simulation of Laterally Coupled InGaZnO4-Based Electric-Double-Layer Transistors for Synaptic Electronics , 2015, IEEE Electron Device Letters.

[77]  Sung‐Min Yoon,et al.  Brain-like synaptic operations of thin-film transistors using In-Ga-Zn-O active channel and PVP-SBA electrolytic gate insulator , 2016, 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD).

[78]  C. C. Law,et al.  Formation of receptive fields in realistic visual environments according to the Bienenstock, Cooper, and Munro (BCM) theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Yang Hui Liu,et al.  Freestanding Artificial Synapses Based on Laterally Proton‐Coupled Transistors on Chitosan Membranes , 2015, Advanced materials.

[80]  Hirofumi Tanaka,et al.  Recent progress on fabrication of memristor and transistor-based neuromorphic devices for high signal processing speed with low power consumption , 2018 .

[81]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[82]  Jianning Ding,et al.  Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors , 2015 .

[83]  Mark F. Bear,et al.  The BCM theory of synapse modification at 30: interaction of theory with experiment , 2012, Nature Reviews Neuroscience.

[84]  Yang Hui Liu,et al.  Transient characteristics for proton gating in laterally coupled indium-zinc-oxide transistors. , 2015, ACS applied materials & interfaces.

[85]  Junliang Yang,et al.  Polymer–electrolyte-gated nanowire synaptic transistors for neuromorphic applications , 2017 .

[86]  Ping Feng,et al.  Neuromorphic Simulation of Proton Conductors Laterally Coupled Oxide-Based Transistors With Multiple in-Plane Gates , 2017, IEEE Electron Device Letters.

[87]  J. Sullivan A simple depletion model of the readily releasable pool of synaptic vesicles cannot account for paired-pulse depression. , 2007, Journal of neurophysiology.

[88]  Qing Wan,et al.  Solution-Processed Chitosan-Gated IZO-Based Transistors for Mimicking Synaptic Plasticity , 2014, IEEE Electron Device Letters.

[89]  George G. Malliaras,et al.  Steady‐State and Transient Behavior of Organic Electrochemical Transistors , 2007 .

[90]  Hongtao Yuan,et al.  Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. , 2010, Journal of the American Chemical Society.

[91]  M. Bear,et al.  Synaptic plasticity: LTP and LTD , 1994, Current Opinion in Neurobiology.

[92]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[93]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[94]  Qing Wan,et al.  Short-Term Memory to Long-Term Memory Transition Mimicked in IZO Homojunction Synaptic Transistors , 2013, IEEE Electron Device Letters.

[95]  George G. Malliaras,et al.  Neuromorphic device architectures with global connectivity through electrolyte gating , 2017, Nature Communications.

[96]  D. Linden,et al.  Long-term synaptic depression in the mammalian brain , 1994, Neuron.

[97]  Jianwen Zhao,et al.  Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin‐Film Transistors , 2017 .

[98]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[99]  Shimeng Yu,et al.  Neuro-Inspired Computing With Emerging Nonvolatile Memorys , 2018, Proceedings of the IEEE.

[100]  Wade G Regehr,et al.  Short-term forms of presynaptic plasticity , 2011, Current Opinion in Neurobiology.

[101]  Ionic/electronic hybrid transistor for mimicking forgetting curves , 2013, 2013 IEEE International Conference of Electron Devices and Solid-state Circuits.

[102]  Anatol C. Kreitzer,et al.  Interplay between Facilitation, Depression, and Residual Calcium at Three Presynaptic Terminals , 2000, The Journal of Neuroscience.

[103]  Jonathan Rivnay,et al.  Benchmarking organic mixed conductors for transistors , 2017, Nature Communications.

[104]  Christian K. Machens,et al.  Building the Human Brain , 2012, Science.

[105]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[106]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[107]  Hongliang Zhang,et al.  Nanogranular Al2O3 proton conducting films for low-voltage oxide-based homojunction thin-film transistors , 2013 .

[108]  Jong-Hyun Ahn,et al.  High-performance flexible graphene field effect transistors with ion gel gate dielectrics. , 2010, Nano letters.

[109]  Yi Cui,et al.  Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. , 2015, Accounts of chemical research.

[110]  Shimpei Ono,et al.  Electric‐Field Control of the Metal‐Insulator Transition in Ultrathin NdNiO3 Films , 2010, Advanced materials.

[111]  D. Faber,et al.  Properties and Plasticity of Paired-Pulse Depression at a Central Synapse , 2000, The Journal of Neuroscience.

[112]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[113]  Rohit Abraham John,et al.  Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing. , 2017, Small.

[114]  John A Rogers,et al.  Polymer electrolyte gating of carbon nanotube network transistors. , 2005, Nano letters.

[115]  Zhixian Zhou,et al.  Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. , 2013, ACS nano.

[116]  Li Qiang Zhu,et al.  Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors. , 2013, Nanoscale.

[117]  A. Huang,et al.  Proton conducting zeolite films for low-voltage oxide-based electric-double-layer thin-film transistors and logic gates , 2013 .

[118]  C. Frisbie,et al.  High Carrier Density and Metallic Conductivity in Poly(3‐hexylthiophene) Achieved by Electrostatic Charge Injection , 2006 .

[119]  Priscilla Kailian Ang,et al.  Solution-gated epitaxial graphene as pH sensor. , 2008, Journal of the American Chemical Society.

[120]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[121]  Dewei Chu,et al.  Electric double-layer transistors: a review of recent progress , 2015, Journal of Materials Science.

[122]  Li Qiang Zhu,et al.  Activity Dependent Synaptic Plasticity Mimicked on Indium-Tin-Oxide Electric-Double-Layer Transistor. , 2017, ACS applied materials & interfaces.

[123]  Steve Furber,et al.  Large-scale neuromorphic computing systems , 2016, Journal of neural engineering.

[124]  C. Frisbie,et al.  Size-dependent electrical transport in CdSe nanocrystal thin films. , 2010, Nano letters.

[125]  Q. Tang,et al.  Ultralow-Voltage Transparent $\hbox{In}_{2} \hbox{O}_{3}$ Nanowire Electric-Double-Layer Transistors , 2011, IEEE Electron Device Letters.

[126]  Ning Liu,et al.  Energy-Efficient Artificial Synapses Based on Flexible IGZO Electric-Double-Layer Transistors , 2015, IEEE Electron Device Letters.

[127]  Sapan Agarwal,et al.  Li‐Ion Synaptic Transistor for Low Power Analog Computing , 2017, Advanced materials.

[128]  T. Lodge,et al.  “Cut and Stick” Rubbery Ion Gels as High Capacitance Gate Dielectrics , 2012, Advanced materials.

[129]  Gilles Horowitz,et al.  Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors , 2012, Analytical and Bioanalytical Chemistry.

[130]  Qing Wan,et al.  Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors. , 2016, ACS applied materials & interfaces.

[131]  Ullrich Scherf,et al.  Organic semiconductors for solution-processable field-effect transistors (OFETs). , 2008, Angewandte Chemie.

[132]  D. Drachman Do we have brain to spare? , 2005, Neurology.

[133]  Qing Wan,et al.  2D MoS2 Neuromorphic Devices for Brain-Like Computational Systems. , 2017, Small.

[134]  X. Crispin,et al.  Ferroelectric polarization induces electric double layer bistability in electrolyte-gated field-effect transistors. , 2014, ACS applied materials & interfaces.

[135]  Y. Dan,et al.  Spike Timing-Dependent Plasticity of Neural Circuits , 2004, Neuron.

[136]  Alex Ming Shen,et al.  A Carbon Nanotube Synapse with Dynamic Logic and Learning , 2013, Advanced materials.

[137]  Y. Liu,et al.  Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor , 2012 .

[138]  Ling-an Kong,et al.  Ion-gel gated field-effect transistors with solution-processed oxide semiconductors for bioinspired artificial synapses , 2016 .

[139]  Tian-Ling Ren,et al.  Carbon Nanotube Transistor with Short-Term Memory , 2016 .

[140]  Yongli Gao,et al.  Artificial synapses based on biopolymer electrolyte-coupled SnO2 nanowire transistors , 2016 .

[141]  H. Markram,et al.  Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit , 2004, The Journal of physiology.

[142]  Guodong Wu,et al.  Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates , 2014 .

[143]  Jia Sun,et al.  Spatially-correlated neuron transistors with ion-gel gating for brain-inspired applications , 2017 .

[144]  Qing Wan,et al.  Proton‐Conducting Graphene Oxide‐Coupled Neuron Transistors for Brain‐Inspired Cognitive Systems , 2015, Advanced materials.

[145]  Byoung Hun Lee,et al.  Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device , 2013, Nanotechnology.

[146]  Wei Lu,et al.  Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .

[147]  G. Bi,et al.  Distributed synaptic modification in neural networks induced by patterned stimulation , 1999, Nature.

[148]  Yi Shi,et al.  Proton Conducting Graphene Oxide/Chitosan Composite Electrolytes as Gate Dielectrics for New-Concept Devices , 2016, Scientific Reports.

[149]  X. Zhao,et al.  A review of molecular modelling of electric double layer capacitors. , 2014, Physical chemistry chemical physics : PCCP.

[150]  P. Lyu,et al.  High performance electric-double-layer amorphous IGZO thin-film transistors gated with hydrated bovine serum albumin protein , 2015 .

[151]  Hidekazu Shimotani,et al.  Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2 , 2011 .

[152]  Qing Wan,et al.  Short-Term Plasticity and Synaptic Filtering Emulated in Electrolyte-Gated IGZO Transistors , 2016, IEEE Electron Device Letters.

[153]  Guanggui Cheng,et al.  Synaptic behaviors mimicked in indium-zinc-oxide transistors gated by high-proton-conducting graphene oxide-based composite solid electrolytes , 2016 .

[154]  A. Fujiwara,et al.  Characteristics of conjugated hydrocarbon based thin film transistor with ionic liquid gate dielectric , 2011 .

[155]  Zhiyong Li,et al.  Ionic/Electronic Hybrid Materials Integrated in a Synaptic Transistor with Signal Processing and Learning Functions , 2010, Advanced materials.

[156]  Li Qiang Zhu,et al.  Oxide-based Synaptic Transistors Gated by Sol-Gel Silica Electrolytes. , 2016, ACS applied materials & interfaces.

[157]  Yi Shi,et al.  Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors , 2016, Scientific Reports.

[158]  J. Eilers,et al.  Paired‐pulse facilitation at recurrent Purkinje neuron synapses is independent of calbindin and parvalbumin during high‐frequency activation , 2013, The Journal of physiology.

[159]  Yang Hui Liu,et al.  Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane. , 2016, ACS applied materials & interfaces.

[160]  R. Shapley,et al.  Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition , 2003, Neuron.

[161]  Li Qiang Zhu,et al.  Biodegradable oxide synaptic transistors gated by a biopolymer electrolyte , 2016 .

[162]  Masashi Kawasaki,et al.  Electric-field-induced superconductivity in an insulator. , 2008, Nature materials.

[163]  Sung‐Min Yoon,et al.  Short-term and long-term memory operations of synapse thin-film transistors using an In–Ga–Zn–O active channel and a poly(4-vinylphenol)–sodium β-alumina electrolytic gate insulator , 2016 .

[164]  A. Raychaudhuri,et al.  Enhancing photoresponse by synergy of gate and illumination in electric double layer field effect transistors fabricated on n-ZnO , 2013 .

[165]  L. Abbott,et al.  Redundancy Reduction and Sustained Firing with Stochastic Depressing Synapses , 2002, The Journal of Neuroscience.

[166]  M. Carandini,et al.  A Synaptic Explanation of Suppression in Visual Cortex , 2002, The Journal of Neuroscience.

[167]  Q. Tang,et al.  Ultralow-Voltage Electric Double-Layer SnO 2 Nanowire Transistors Gated by Microporous SiO 2 -Based Solid Electrolyte , 2010 .

[168]  Jian Shi,et al.  A correlated nickelate synaptic transistor , 2013, Nature Communications.

[169]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[170]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[171]  Y. Ohno,et al.  Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. , 2009, Nano letters.

[172]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[173]  Ling-an Kong,et al.  Oxide-based synaptic transistors gated by solution-processed gelatin electrolytes , 2017 .

[174]  P. B. Pillai,et al.  Nanoionics-Based Three-Terminal Synaptic Device Using Zinc Oxide , 2017 .

[175]  Y. Mei,et al.  Nanogranular SiO2 proton gated silicon layer transistor mimicking biological synapses , 2016 .

[176]  Jia Sun,et al.  Transparent $\hbox{SnO}_{2}$ Nanowire Electric-Double-Layer Transistors With Different Antimony Doping Levels , 2011, IEEE Electron Device Letters.

[177]  Jianning Ding,et al.  Excitatory Post-Synaptic Potential Mimicked in Indium-Zinc-Oxide Synaptic Transistors Gated by Methyl Cellulose Solid Electrolyte , 2016, Scientific Reports.

[178]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[179]  L. Zhu,et al.  Oxide Electric-Double-Layer Transistors Gated by a Chitosan-Based Biopolymer Electrolyte , 2015, IEEE Electron Device Letters.

[180]  D. Kullmann,et al.  Long-term synaptic plasticity in hippocampal interneurons , 2007, Nature Reviews Neuroscience.

[181]  M. Gouy,et al.  Sur la constitution de la charge électrique à la surface d'un électrolyte , 1910 .

[182]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[183]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[184]  Matthew J. Panzer,et al.  Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric , 2005 .

[185]  Qing Wan,et al.  Amorphous InGaZnO 4 Neuron Transistors with Temporal and Spatial Summation Function , 2017 .

[186]  M. Bear,et al.  Long-term depression in hippocampus. , 1996, Annual review of neuroscience.

[187]  Qing Wan,et al.  Indium-Zinc-Oxide Neuron Thin Film Transistors Laterally Coupled by Sodium Alginate Electrolytes , 2016, IEEE Transactions on Electron Devices.

[188]  Daoben Zhu,et al.  A Dual‐Organic‐Transistor‐Based Tactile‐Perception System with Signal‐Processing Functionality , 2017, Advanced materials.

[189]  W. Xie,et al.  Organic Electrical Double Layer Transistors Based on Rubrene Single Crystals: Examining Transport at High Surface Charge Densities above 1013 cm–2 , 2011 .

[190]  H. Markram,et al.  Information Processing with Frequency-Dependent Synaptic Connections , 1998, Neurobiology of Learning and Memory.

[191]  George G. Malliaras,et al.  Synaptic plasticity functions in an organic electrochemical transistor , 2015 .

[192]  D Debanne,et al.  Paired‐pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. , 1996, The Journal of physiology.

[193]  Qing Wan,et al.  Laterally Coupled IZO-Based Transistors on Free-Standing Proton Conducting Chitosan Membranes , 2014, IEEE Electron Device Letters.

[194]  Yi Shi,et al.  Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors. , 2016, ACS applied materials & interfaces.

[195]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[196]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[197]  Jang-Sik Lee,et al.  Biocompatible and Flexible Chitosan‐Based Resistive Switching Memory with Magnesium Electrodes , 2015 .

[198]  Yang Hui Liu,et al.  Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Transistors on Flexible Conducting Graphene Substrates , 2016, Advanced materials.

[199]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[200]  Kunio Awaga,et al.  Electric-double-layer field-effect transistors with ionic liquids. , 2013, Physical chemistry chemical physics : PCCP.

[201]  Laurent Pilon,et al.  Accurate Simulations of Electric Double Layer Capacitance of Ultramicroelectrodes , 2011 .

[202]  Jang‐Sik Lee,et al.  Resistive switching memory based on bioinspired natural solid polymer electrolytes. , 2015, ACS nano.

[203]  Hongyu Yu,et al.  Overshoot Stress on Ultra-Thin HfO2 High- $\kappa $ Layer and Its Impact on Lifetime Extraction , 2015, IEEE Electron Device Letters.

[204]  L. Cooper,et al.  A physiological basis for a theory of synapse modification. , 1987, Science.

[205]  Robert A. Nawrocki,et al.  A Mini Review of Neuromorphic Architectures and Implementations , 2016, IEEE Transactions on Electron Devices.

[206]  A. Dobrynin,et al.  Theory of polyelectrolytes in solutions and at surfaces , 2005 .

[207]  S. Wang,et al.  Malleability of Spike-Timing-Dependent Plasticity at the CA3–CA1 Synapse , 2006, The Journal of Neuroscience.

[208]  Qing Wan,et al.  Classical Conditioning Mimicked in Junctionless IZO Electric-Double-Layer Thin-Film Transistors , 2014, IEEE Electron Device Letters.

[209]  L C Katz,et al.  Neurotrophins and synaptic plasticity. , 1999, Annual review of neuroscience.

[210]  George G. Malliaras,et al.  Orientation selectivity in a multi-gated organic electrochemical transistor , 2016, Scientific Reports.

[211]  D. Buonomano,et al.  The neural basis of temporal processing. , 2004, Annual review of neuroscience.

[212]  J. Joshua Yang,et al.  Synaptic electronics and neuromorphic computing , 2016, Science China Information Sciences.

[213]  K. Awaga,et al.  A complementary organic inverter of porphyrazine thin films: low-voltage operation using ionic liquid gate dielectrics. , 2011, Chemical communications.

[214]  W. Regehr Short-term presynaptic plasticity. , 2012, Cold Spring Harbor perspectives in biology.