A Fully Eulerian formulation for fluid-structure-interaction problems

In this work, we present a Fully Eulerian framework for fluid-structure interaction (fsi) problems coupling the incompressible Navier-Stokes equations with a hyperelastic solid. The Fully Eulerian framework is a monolithic implicit variational formulation for the coupled problem. In contrast to the well-established Arbitrary Lagrangian Eulerian (ALE) coordinates, the Fully Eulerian framework formulates both subproblems, fluid and solid, in Eulerian coordinates. This concept circumvents various difficulties connected to ALE coordinates since no artificial domain mapping is used. The formulation is an interface-capturing method and uses an extension of the solid's deformation, the Initial Point Set, to detect the interface location. By construction, very large deformation as well as topology changes like contact of the solid to the domain boundary or other solid parts are possible.

[1]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[2]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[3]  Brian T. Helenbrook,et al.  Mesh deformation using the biharmonic operator , 2003 .

[4]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[5]  Graham F. Carey,et al.  Approximate boundary-flux calculations☆ , 1985 .

[6]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[7]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[8]  Thomas Dunne,et al.  Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on Eulerian and Arbitrary Lagrangian-Eulerian Variational Formulations , 2007 .

[9]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .

[10]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[11]  Stefan Turek,et al.  A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics , 2006 .

[12]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[13]  Thomas Richter,et al.  Goal-oriented error estimation for fluid–structure interaction problems , 2012 .

[14]  I. Akkerman,et al.  Goal-oriented error estimation and adaptivity for fluid–structure interaction using exact linearized adjoints , 2011 .

[15]  Thomas Dunne,et al.  An Eulerian approach to fluid–structure interaction and goal‐oriented mesh adaptation , 2006 .

[16]  Rolf Rannacher,et al.  NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION BASED ON MONOLITHIC VARIATIONAL FORMULATIONS , 2010 .

[17]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[18]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[19]  Giovanni Paolo Galdi,et al.  Hemodynamical Flows: Modeling, Analysis and Simulation , 2008 .

[20]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[21]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[22]  J. Craggs Applied Mathematical Sciences , 1973 .

[23]  T. Richter,et al.  SOLUTIONS OF 3D NAVIER-STOKES BENCHMARK PROBLEMS WITH ADAPTIVE FINITE ELEMENTS , 2006 .

[24]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[25]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[26]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[27]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[28]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[29]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[30]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[31]  Malte Braack,et al.  Finite elements with local projection stabilization for incompressible flow problems , 2009 .

[32]  Rolf Rannacher,et al.  On the smoothing property of the crank-nicolson scheme , 1982 .

[33]  T. Belytschko,et al.  The extended finite element method (XFEM) for solidification problems , 2002 .

[34]  Winnifried Wollner,et al.  On the pressure approximation in nonstationary incompressible flow simulations on dynamically varying spatial meshes , 2012 .

[35]  Omar Ghattas,et al.  A variational finite element method for stationary nonlinear fluid-solid interaction , 1995 .

[36]  T. Wick,et al.  Finite elements for fluid–structure interaction in ALE and fully Eulerian coordinates , 2010 .

[37]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[38]  Stefan Turek,et al.  Numerical Simulation and Benchmarking of a Monolithic Multigrid Solver for Fluid-Structure Interaction Problems with Application to Hemodynamics , 2011 .

[39]  T. Wick Fluid-structure interactions using different mesh motion techniques , 2011 .

[40]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[41]  Daniel Coutand,et al.  Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .

[42]  René de Borst,et al.  Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Shape-Linearization Approach , 2010, SIAM J. Sci. Comput..

[43]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[44]  Carlos A. Felippa,et al.  A Classification of Interface Treatments for FSI , 2011 .

[45]  S. Turek,et al.  Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow , 2006 .

[46]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[47]  Ping He,et al.  A full-Eulerian solid level set method for simulation of fluid–structure interactions , 2011 .

[48]  Rolf Rannacher,et al.  Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars) , 2007 .

[49]  R. de Borst,et al.  Space/time multigrid for a fluid--structure-interaction problem , 2006 .

[50]  M. Aurada,et al.  Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.

[51]  Fpt Frank Baaijens,et al.  A Eulerian approach to the finite element modelling of neo-Hookean rubber material , 1994 .

[52]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[53]  Kazuo Kashiyama,et al.  Eulerian formulation using stabilized finite element method for large deformation solid dynamics , 2007 .

[54]  Yoichiro Matsumoto,et al.  A full Eulerian finite difference approach for solving fluid-structure coupling problems , 2010, J. Comput. Phys..

[55]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[56]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[57]  Rolf Rannacher,et al.  An Adaptive Finite Element Method for Fluid-Structure Interaction Problems Based on a Fully Eulerian Formulation , 2011 .

[58]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[59]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[60]  René de Borst,et al.  Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Domain-Map Linearization Approach , 2010, SIAM J. Sci. Comput..