Differential curvature invariants and event horizon detection for accelerating Kerr-Newman black holes in (anti-)de Sitter spacetime
暂无分享,去创建一个
[1] V. Frolov,et al. Chiral anomalies in black hole spacetimes , 2022, Physical Review D.
[2] D. Raine. General relativity , 1980, Nature.
[3] G. V. Kraniotis. Curvature invariants for accelerating Kerr–Newman black holes in (anti-)de Sitter spacetime , 2021, Classical and Quantum Gravity.
[4] E. Schnetter,et al. Curvature invariants in a binary black hole merger , 2021, General Relativity and Gravitation.
[5] M. Galaverni,et al. Photon helicity and quantum anomalies in curved spacetimes , 2020, General Relativity and Gravitation.
[6] B. Ahmedov,et al. Supermassive Black Holes as Possible Sources of Ultrahigh-energy Cosmic Rays , 2020, The Astrophysical Journal.
[7] Arman Tursunov,et al. Influence of Cosmic Repulsion and Magnetic Fields on Accretion Disks Rotating around Kerr Black Holes , 2020, Universe.
[8] G. V. Kraniotis. Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries , 2019, The European Physical Journal C.
[9] A. Eckart,et al. Effect of Electromagnetic Interaction on Galactic Center Flare Components , 2019, The Astrophysical Journal.
[10] David O. Jones,et al. The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope , 2018, The Astrophysical Journal.
[11] Andreas Eckart,et al. On the charge of the Galactic centre black hole , 2018, Monthly Notices of the Royal Astronomical Society.
[12] A. Coley,et al. Cartan invariants and event horizon detection , 2017 .
[13] B. Yanny,et al. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.
[14] J. Navarro-Salas,et al. Electromagnetic Duality Anomaly in Curved Spacetimes. , 2016, Physical review letters.
[15] L. F. Costa,et al. Gravitomagnetism and the significance of the curvature scalar invariants , 2016, Physical Review D.
[16] C. Lammerzahl,et al. Photon regions and shadows of accelerated black holes , 2015, 1503.03036.
[17] D. Page,et al. Local invariants vanishing on stationary horizons: a diagnostic for locating black holes. , 2015, Physical review letters.
[18] K. Lake,et al. Invariant characterization of the Kerr spacetime: Locating the horizon and measuring the mass and spin of rotating black holes using curvature invariants , 2014, 1412.8757.
[19] Adam D. Myers,et al. Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.
[20] K. Lake. Exact Space-Times in Einstein's General Relativity , 2010 .
[21] Ignazio Ciufolini,et al. Dragging of inertial frames , 2007, Nature.
[22] G. V. Kraniotis. Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr–de Sitter black hole spacetimes , 2006, gr-qc/0602056.
[23] Garching,et al. X-ray flares reveal mass and angular momentum of the Galactic Center black hole , 2004, astro-ph/0401589.
[24] D. Rouan,et al. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre , 2003, Nature.
[25] B. Krishnan,et al. Dynamical Horizons and their Properties , 2003, gr-qc/0308033.
[26] G. V. Kraniotis,et al. General relativity, the cosmological constant and modular forms , 2001, gr-qc/0105022.
[27] Z. Stuchlík,et al. Equatorial photon motion in the Kerr-Newman spacetimes with a non-zero cosmological constant , 2000, 0803.2539.
[28] A. Z. Petrov,et al. The Classification of Spaces Defining Gravitational Fields , 2000 .
[29] M. Campanelli,et al. Making use of geometrical invariants in black hole collisions , 2000, gr-qc/0003031.
[30] G. Bao,et al. Kerr–Newman–de Sitter black holes with a restricted repulsive barrier of equatorial photon motion , 1998 .
[31] C. Mcintosh,et al. A Complete Set of Riemann Invariants , 1997 .
[32] J. Carminati,et al. Algebraic invariants of the Riemann tensor in a four‐dimensional Lorentzian space , 1991 .
[33] G. Sneddon. On the algebraic invariants of the four-dimensional Riemann tensor , 1986 .
[34] A. Karlhede,et al. A note on a local effect at the Schwarzschild sphere , 1982 .
[35] K. Katsuno. Null hypersurfaces in Lorentzian manifolds: I , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[36] J. Plebański,et al. Rotating, charged, and uniformly accelerating mass in general relativity , 1976 .
[37] B. Carter. Global structure of the Kerr family of gravitational fields , 1968 .
[38] Werner Israel,et al. Event Horizons in Static Vacuum Space-Times , 1967 .
[39] P. Szekeres. THE GRAVITATIONAL COMPASS , 1965 .
[40] E. Newman,et al. Metric of a Rotating, Charged Mass , 1965 .
[41] R. Kerr,et al. Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .
[42] Roger Penrose,et al. An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .
[43] Kevin A. Dudevoir,et al. Event Horizon Telescope Results . I . the Shadow of the Supermassive Black Hole , 2019 .
[44] Jeff Hecht,et al. Event horizon , 2011, Nature.
[45] R. Penrose,et al. Gravitational Collapse : The Role of General Relativity 1 , 2002 .
[46] I. Ciufolini. Dragging of Inertial Frames, Gravitomagnetism, and Mach's Principle , 1995 .
[47] L. Witten. Invariants of General Relativity and the Classification of Spaces , 1959 .