Differential curvature invariants and event horizon detection for accelerating Kerr-Newman black holes in (anti-)de Sitter spacetime

We compute analytically differential invariants for accelerating, rotating and charged black holes with a cosmological constant $\Lambda$. In particular, we compute in closed form novel explicit algebraic expressions for curvature invariants constructed from covariant derivatives of the Riemann and Weyl tensors, such as the Karlhede and the Lake-Abdelqader invariants, for the Kerr-Newman-(anti-)de Sitter and accelerating Kerr-Newman-(anti-)de Sitter black hole spacetimes. We explicitly show that some of the computed curvature invariants are vanishing on the event and Cauchy horizons and/or the ergosurface of the accelerating, charged and rotating black holes with a non-zero cosmological constant. Therefore they can serve as possible detectors of the event horizon and ergosurface for such black hole metrics which belong to the most general type D solution of the Einstein-Maxwell equations with a cosmological constant.

[1]  V. Frolov,et al.  Chiral anomalies in black hole spacetimes , 2022, Physical Review D.

[2]  D. Raine General relativity , 1980, Nature.

[3]  G. V. Kraniotis Curvature invariants for accelerating Kerr–Newman black holes in (anti-)de Sitter spacetime , 2021, Classical and Quantum Gravity.

[4]  E. Schnetter,et al.  Curvature invariants in a binary black hole merger , 2021, General Relativity and Gravitation.

[5]  M. Galaverni,et al.  Photon helicity and quantum anomalies in curved spacetimes , 2020, General Relativity and Gravitation.

[6]  B. Ahmedov,et al.  Supermassive Black Holes as Possible Sources of Ultrahigh-energy Cosmic Rays , 2020, The Astrophysical Journal.

[7]  Arman Tursunov,et al.  Influence of Cosmic Repulsion and Magnetic Fields on Accretion Disks Rotating around Kerr Black Holes , 2020, Universe.

[8]  G. V. Kraniotis Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries , 2019, The European Physical Journal C.

[9]  A. Eckart,et al.  Effect of Electromagnetic Interaction on Galactic Center Flare Components , 2019, The Astrophysical Journal.

[10]  David O. Jones,et al.  The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope , 2018, The Astrophysical Journal.

[11]  Andreas Eckart,et al.  On the charge of the Galactic centre black hole , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  A. Coley,et al.  Cartan invariants and event horizon detection , 2017 .

[13]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[14]  J. Navarro-Salas,et al.  Electromagnetic Duality Anomaly in Curved Spacetimes. , 2016, Physical review letters.

[15]  L. F. Costa,et al.  Gravitomagnetism and the significance of the curvature scalar invariants , 2016, Physical Review D.

[16]  C. Lammerzahl,et al.  Photon regions and shadows of accelerated black holes , 2015, 1503.03036.

[17]  D. Page,et al.  Local invariants vanishing on stationary horizons: a diagnostic for locating black holes. , 2015, Physical review letters.

[18]  K. Lake,et al.  Invariant characterization of the Kerr spacetime: Locating the horizon and measuring the mass and spin of rotating black holes using curvature invariants , 2014, 1412.8757.

[19]  Adam D. Myers,et al.  Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.

[20]  K. Lake Exact Space-Times in Einstein's General Relativity , 2010 .

[21]  Ignazio Ciufolini,et al.  Dragging of inertial frames , 2007, Nature.

[22]  G. V. Kraniotis Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr–de Sitter black hole spacetimes , 2006, gr-qc/0602056.

[23]  Garching,et al.  X-ray flares reveal mass and angular momentum of the Galactic Center black hole , 2004, astro-ph/0401589.

[24]  D. Rouan,et al.  Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre , 2003, Nature.

[25]  B. Krishnan,et al.  Dynamical Horizons and their Properties , 2003, gr-qc/0308033.

[26]  G. V. Kraniotis,et al.  General relativity, the cosmological constant and modular forms , 2001, gr-qc/0105022.

[27]  Z. Stuchlík,et al.  Equatorial photon motion in the Kerr-Newman spacetimes with a non-zero cosmological constant , 2000, 0803.2539.

[28]  A. Z. Petrov,et al.  The Classification of Spaces Defining Gravitational Fields , 2000 .

[29]  M. Campanelli,et al.  Making use of geometrical invariants in black hole collisions , 2000, gr-qc/0003031.

[30]  G. Bao,et al.  Kerr–Newman–de Sitter black holes with a restricted repulsive barrier of equatorial photon motion , 1998 .

[31]  C. Mcintosh,et al.  A Complete Set of Riemann Invariants , 1997 .

[32]  J. Carminati,et al.  Algebraic invariants of the Riemann tensor in a four‐dimensional Lorentzian space , 1991 .

[33]  G. Sneddon On the algebraic invariants of the four-dimensional Riemann tensor , 1986 .

[34]  A. Karlhede,et al.  A note on a local effect at the Schwarzschild sphere , 1982 .

[35]  K. Katsuno Null hypersurfaces in Lorentzian manifolds: I , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  J. Plebański,et al.  Rotating, charged, and uniformly accelerating mass in general relativity , 1976 .

[37]  B. Carter Global structure of the Kerr family of gravitational fields , 1968 .

[38]  Werner Israel,et al.  Event Horizons in Static Vacuum Space-Times , 1967 .

[39]  P. Szekeres THE GRAVITATIONAL COMPASS , 1965 .

[40]  E. Newman,et al.  Metric of a Rotating, Charged Mass , 1965 .

[41]  R. Kerr,et al.  Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .

[42]  Roger Penrose,et al.  An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .

[43]  Kevin A. Dudevoir,et al.  Event Horizon Telescope Results . I . the Shadow of the Supermassive Black Hole , 2019 .

[44]  Jeff Hecht,et al.  Event horizon , 2011, Nature.

[45]  R. Penrose,et al.  Gravitational Collapse : The Role of General Relativity 1 , 2002 .

[46]  I. Ciufolini Dragging of Inertial Frames, Gravitomagnetism, and Mach's Principle , 1995 .

[47]  L. Witten Invariants of General Relativity and the Classification of Spaces , 1959 .