Deformation-induced martensitic transformation in a new metastable β titanium alloy

[1]  F. Prima,et al.  In situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti-24Nb-0.5N and Ti-24Nb-0.5O alloys , 2015 .

[2]  D. Wexler,et al.  The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–3Fe–3Al alloy , 2015 .

[3]  F. Prima,et al.  Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects , 2013 .

[4]  S. Zwaag,et al.  Effect of strain rate on stress-induced martensitic formation and the compressive properties of Ti–V–(Cr,Fe)–Al alloys , 2013 .

[5]  F. Prima,et al.  On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects , 2012 .

[6]  S. van der Zwaag,et al.  Tuning the stress induced martensitic formation in titanium alloys by alloy design , 2012, Journal of Materials Science.

[7]  P. Castany,et al.  Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis , 2011 .

[8]  F. Prima,et al.  Mechanical properties of low modulus beta titanium alloys designed from the electronic approach. , 2010, Journal of the mechanical behavior of biomedical materials.

[9]  S. Demakov,et al.  Structural and phase transformations in a titanium alloy of the transition class under the effect of deformation , 2010 .

[10]  S. Kamat,et al.  The effect of strain rate on trigger stress for stress-induced martensitic transformation and yield strength in Ti–18Al–8Nb alloy , 2010 .

[11]  P. Rivera-Díaz-del-Castillo,et al.  Plasticity induced transformation in a metastable β Ti-1023 alloy by controlled heat treatments , 2009 .

[12]  S. Zwaag,et al.  Prediction of the martensite start temperature for β titanium alloys as a function of composition , 2009 .

[13]  M. Morinaga,et al.  General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters , 2006 .

[14]  Shuichi Miyazaki,et al.  Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys , 2006 .

[15]  S. Kamat,et al.  Effect of β grain size on stress induced martensitic transformation in β solution treated Ti–10V–2Fe–3Al alloy , 2005 .

[16]  E. Aeby-Gautier,et al.  Modelling of phase transformation kinetics in Ti alloys – Isothermal treatments , 2005 .

[17]  Sia Nemat-Nasser,et al.  Very high strain-rate response of a NiTi shape-memory alloy , 2005 .

[18]  H. Sakamoto Distinction between Thermal and Stress-Induced Martensitic Transformations and Inhomogeneity in Internal Stress , 2002 .

[19]  H. Gu,et al.  Toughening of titanium alloys by twinning and martensite transformation , 2002 .

[20]  M. Philippe,et al.  Deformation induced martensite and superelasticity in a β-metastable titanium alloy , 2000 .

[21]  M. Philippe,et al.  Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy , 2000 .

[22]  Hong Yang,et al.  The concern of elasticity in stress-induced martensitic transformation in NiTi , 1999 .

[23]  M. Niinomi,et al.  Design and mechanical properties of new β type titanium alloys for implant materials , 1998 .

[24]  M. Philippe,et al.  The deformation mechanisms in the β-metastable β-Cez titanium alloy , 1997 .

[25]  O. Izumi,et al.  Effect of Zr, Sn and Al Additions on Deformation Mode and Beta Phase Stability of Metastable Beta Ti Alloys , 1991 .

[26]  M. Grujicic,et al.  Mobility of martensitic interfaces , 1985 .

[27]  G. B. Olson,et al.  Interphase-boundary dislocations and the concept of coherency , 1979 .