A Bound on the bondage Number of toroidal Graphs

The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than γ(G), where γ(G) denote the domination number of G. Let G be a toroidal graph with maximum degree Δ(G). In this paper, we show that b(G) ≤ 9. Moveover, if Δ(G) ≠ 6, then b(G) ≤ 8.

[1]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[2]  Ulrich Teschner,et al.  A new upper bound for the bondage number of graphs with small domination number , 1995, Australas. J Comb..

[3]  Ulrich Teschner A counterexample to a conjecture on the bondage number of a graph , 1993, Discret. Math..

[4]  Frank Harary,et al.  Domination alteration sets in graphs , 1983, Discret. Math..

[5]  Douglas F. Rall,et al.  Bounds on the bondage number of a graph , 1994, Discret. Math..

[6]  Mike Develin,et al.  On the bondage number of planar and directed graphs , 2006, Discret. Math..

[7]  F. Harary,et al.  On the corona of two graphs , 1970 .

[8]  Dieter Rautenbach,et al.  Remarks on the bondage number of planar graphs , 2003, Discret. Math..

[9]  Jinjiang Yuan,et al.  Bondage number of planar graphs , 2000, Discret. Math..

[10]  Michael S. Jacobson,et al.  The bondage number of a graph , 1991, Discret. Math..