Real-time volume data 3D display based on view frustum shear transformation and ray casting integral

Advanced volumetric data three-dimensional (3D) display can provide depth cues than conventional two-dimensional. Here, an algorithm of view frustum shear transformation and ray casting integral to realize real-time volume data 3D display is presented. It is compatible with the existing volume drawing pipeline and robust for other types of 3D displays. Experimental results demonstrate that the volume data is clearly represented, and real-time frame rate is more than 30 fps under the condition of subpixel-level at 4K (3840×2160) resolution. Besides, its performance does not rely on the viewpoint number and viewing angle, therefore, it is very suitable for 3D display of large viewing angles and dense viewpoints.

[1]  Ichiro Sakuma,et al.  Real-time 3D-image-guided navigation system based on integral videography , 2002, SPIE BiOS.

[2]  C. Rezk-Salama,et al.  Advanced illumination techniques for GPU volume raycasting , 2008, SIGGRAPH ASIA Courses.

[3]  S Liu,et al.  Concealed holographic coding for security applications by using a moiré technique. , 1997, Applied optics.

[4]  Christopher J. Fluke,et al.  Interactive Visualization of the Largest Radioastronomy Cubes , 2010, ArXiv.

[5]  Wenhua Dou,et al.  Demonstration of a large-size real-time full-color three-dimensional display. , 2009, Optics letters.

[6]  Dongwoo Kang,et al.  Autostereoscopic 3D display using directional subpixel rendering. , 2018, Optics express.

[7]  Neil A. Dodgson,et al.  Autostereoscopic 3D displays , 2005, Computer.

[8]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[9]  Shujun Xing,et al.  Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing. , 2018, Optics express.

[10]  Anna Vilanova,et al.  Making Grass and Fur Move , 2006, J. WSCG.

[11]  Fabian Kiessling,et al.  Imalytics Preclinical: Interactive Analysis of Biomedical Volume Data , 2016, Theranostics.

[12]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[13]  Phillipp Kaestner Ray Tracing From The Ground Up , 2016 .

[14]  Zhao Wu-xiang 3D Autostereoscopic Liquid Crystal Display Based on Lenticular Lens , 2008 .

[15]  Hee-Jin Choi,et al.  Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array. , 2011, Applied optics.

[16]  Michael Halle,et al.  Multiple viewpoint rendering , 1998, SIGGRAPH.

[17]  Shujun Xing,et al.  High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction. , 2017, Optics express.

[18]  Charles T. Loop,et al.  Holoportation: Virtual 3D Teleportation in Real-time , 2016, UIST.

[19]  Thomas Ertl,et al.  Smart Hardware-Accelerated Volume Rendering , 2003, VisSym.

[20]  Daniel Ruijters Dynamic Resolution in GPU-Accelerated Volume Rendering to Autostereoscopic Multiview Lenticular Displays , 2009, EURASIP J. Adv. Signal Process..

[21]  Duo Chen,et al.  High-efficient rendering of the multi-view image for the three-dimensional display based on the backward ray-tracing technique , 2017 .

[22]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[23]  Renato Pajarola,et al.  SINGLE-PASS MULTIVIEW RENDERING , 2007 .

[24]  Enrico Gobbetti,et al.  GPU Accelerated Direct Volume Rendering on an Interactive Light Field Display , 2008, Comput. Graph. Forum.