Binding of S100A6 to actin and the actin–tropomyosin complex

[1]  M. D. Turner,et al.  Role of S100 proteins in health and disease. , 2020, Biochimica et biophysica acta. Molecular cell research.

[2]  J. Moraczewska,et al.  Tropomyosin isoforms regulate cofilin 1 activity by modulating actin filament conformationw. , 2020, Archives of biochemistry and biophysics.

[3]  Nicole S. Bryce,et al.  Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. , 2020, Seminars in cell & developmental biology.

[4]  E. Hardeman,et al.  Actin–tropomyosin distribution in non-muscle cells , 2019, Journal of Muscle Research and Cell Motility.

[5]  A. Filipek,et al.  Aktualny pogląd na komórkową funkcję S100A6 i jego ligandów, CacyBP/SIP i Sgt1 , 2018, Postepy biochemii.

[6]  Nicole S. Bryce,et al.  Co-polymers of Actin and Tropomyosin Account for a Major Fraction of the Human Actin Cytoskeleton , 2018, Current Biology.

[7]  A. Filipek,et al.  Tubulin-dependent secretion of S100A6 and cellular signaling pathways activated by S100A6-integrin β1 interaction. , 2018, Cellular signalling.

[8]  J. Moraczewska,et al.  Regulation of actin filament turnover by cofilin-1 and cytoplasmic tropomyosin isoforms. , 2017, Biochimica et biophysica acta. Proteins and proteomics.

[9]  Nicole S. Bryce,et al.  Tropomyosin Promotes Lamellipodial Persistence by Collaborating with Arp2/3 at the Leading Edge , 2016, Current Biology.

[10]  Kenneth M. Yamada,et al.  Fibroblasts Lead the Way: A Unified View of 3D Cell Motility. , 2015, Trends in cell biology.

[11]  Daniel P. Mulvihill,et al.  Tropomyosin – master regulator of actin filament function in the cytoskeleton , 2015, Journal of Cell Science.

[12]  P. Gunning,et al.  Cytoskeletal tropomyosins: choreographers of actin filament functional diversity , 2013, Journal of Muscle Research and Cell Motility.

[13]  A. Filipek,et al.  CacyBP/SIP as a novel modulator of the thin filament. , 2013, Biochimica et biophysica acta.

[14]  S. Amerio,et al.  First observation of (B)over-bar(0) -> J/psi K+K- and search for (B)over-bar(0) -> J/psi phi decays , 2013, 1308.5916.

[15]  T. Fath,et al.  Tropomyosin isoforms and reagents , 2011, Bioarchitecture.

[16]  J. Moraczewska,et al.  Different positions of tropomyosin isoforms on actin filament are determined by specific sequences of end‐to‐end overlaps , 2011, Cytoskeleton.

[17]  G. Schevzov,et al.  A Molecular Pathway for Myosin II Recruitment to Stress Fibers , 2011, Current Biology.

[18]  Carolyn L. Geczy,et al.  Inflammation-associated S100 proteins: new mechanisms that regulate function , 2011, Amino Acids.

[19]  Łukasz P Słomnicki,et al.  S100A6 (calcyclin) deficiency induces senescence‐like changes in cell cycle, morphology and functional characteristics of mouse NIH 3T3 fibroblasts , 2010, Journal of cellular biochemistry.

[20]  A. Filipek,et al.  S100A6 - new facts and features. , 2009, Biochemical and biophysical research communications.

[21]  B. Nawrot,et al.  S100A6 binds p53 and affects its activity. , 2009, The international journal of biochemistry & cell biology.

[22]  A. Sobieszek,et al.  Effect of actin C-terminal modification on tropomyosin isoforms binding and thin filament regulation , 2009, Biochimica et biophysica acta.

[23]  P. Rudland,et al.  The basic C-terminal amino acids of calcium-binding protein S100A4 promote metastasis. , 2008, Carcinogenesis.

[24]  S. Paik,et al.  S100A6 (calcyclin) enhances the sensitivity to apoptosis via the upregulation of caspase‐3 activity in Hep3B cells , 2008, Journal of cellular biochemistry.

[25]  G. O'Neill,et al.  Tropomyosin-based regulation of the actin cytoskeleton in time and space. , 2008, Physiological reviews.

[26]  D. Foell,et al.  S100 proteins expressed in phagocytes: a novel group of damage‐associated molecular pattern molecules , 2007, Journal of leukocyte biology.

[27]  E. Hardeman,et al.  Tropomyosin isoforms: divining rods for actin cytoskeleton function. , 2005, Trends in cell biology.

[28]  I. Thorey,et al.  MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. , 2004, Blood.

[29]  Eun Jin Lee,et al.  Calcyclin, a Ca2+ Ion-binding Protein, Contributes to the Anabolic Effects of Simvastatin on Bone* , 2004, Journal of Biological Chemistry.

[30]  K. Tang,et al.  Calcyclin (S100A6) regulates pulmonary fibroblast proliferation, morphology, and cytoskeletal organization in vitro , 2003, Journal of cellular biochemistry.

[31]  N. Greenfield,et al.  Alteration of tropomyosin function and folding by a nemaline myopathy-causing mutation. , 2000, Biophysical journal.

[32]  M. Hartmann,et al.  S100A12 Is Expressed Exclusively by Granulocytes and Acts Independently from MRP8 and MRP14* , 1999, The Journal of Biological Chemistry.

[33]  D. Helfman,et al.  Ca2+-dependent interaction of S100A2 with muscle and nonmuscle tropomyosins. , 1997, Journal of cell science.

[34]  R. Makuch,et al.  Characterization of chicken gizzard calcyclin and examination of its interaction with caldesmon. , 1996, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[35]  S. Lehrer,et al.  Ca2+-dependent binding of calcyclin to muscle tropomyosin. , 1996, Biochemical and biophysical research communications.

[36]  J. Kuźnicki,et al.  Calcyclin from mouse Ehrlich ascites tumor cells and rabbit lung form non-covalent dimers. , 1994, Biochimica et biophysica acta.

[37]  J. Kuźnicki,et al.  Calcyclin as a marker of human epithelial cells and fibroblasts. , 1992, Experimental cell research.

[38]  F. Studier,et al.  Use of T7 RNA polymerase to direct expression of cloned genes. , 1990, Methods in enzymology.

[39]  L. Kaczmarek,et al.  Tissue specific distribution of calcyclin — 10.5 kDa Ca2+ ‐binding protein , 1989, FEBS letters.

[40]  J. Spudich,et al.  The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. , 1971, The Journal of biological chemistry.

[41]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.