A comparison of computational methodologies for the structural modelling of biologically relevant zinc complexes

[1]  O. Denis-Alpizar,et al.  A benchmark for the size of the QM system required for accurate hybrid QM/MM calculations on the metal site of the protein copper, zinc superoxide dismutase , 2019, Journal of Molecular Modeling.

[2]  E. L. Denchi,et al.  Caught with One's Zinc Fingers in the Genome Integrity Cookie Jar. , 2018, Trends in genetics : TIG.

[3]  A. Krężel,et al.  Metal binding properties of zinc fingers with a naturally altered metal binding site. , 2018, Metallomics : integrated biometal science.

[4]  C. Bannwarth,et al.  B97-3c: A revised low-cost variant of the B97-D density functional method. , 2018, The Journal of chemical physics.

[5]  Andreas Hansen,et al.  A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. , 2017, Physical chemistry chemical physics : PCCP.

[6]  M. Head‐Gordon,et al.  Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals , 2017 .

[7]  C. Bannwarth,et al.  Dispersion-Corrected Mean-Field Electronic Structure Methods. , 2016, Chemical reviews.

[8]  S. Grimme,et al.  Consistent structures and interactions by density functional theory with small atomic orbital basis sets. , 2015, The Journal of chemical physics.

[9]  C. Lim,et al.  Modeling Zn²⁺ release from metallothionein. , 2014, The journal of physical chemistry. A.

[10]  Stefan Grimme,et al.  Corrected small basis set Hartree‐Fock method for large systems , 2013, J. Comput. Chem..

[11]  H. Stammler,et al.  Unprecedented Large Temperature Dependence of Silver(I)-Silver(I) Distances in Some N-Heterocyclic Carbene Silver(I) Complex Salts , 2013 .

[12]  Jeng-Da Chai,et al.  Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. , 2012, Journal of chemical theory and computation.

[13]  Mauricio González,et al.  Computational studies of the metal-binding site of the wild-type and the H46R mutant of the copper, zinc superoxide dismutase. , 2012, Inorganic chemistry.

[14]  P. Pyykkö Relativistic effects in chemistry: more common than you thought. , 2012, Annual review of physical chemistry.

[15]  Per Greisen,et al.  Metallothionein Zn2+- and Cu2+-clusters from first-principles calculations. , 2012, Dalton transactions.

[16]  Y. Hayashi,et al.  Metallothionein-III prevents neuronal death and prolongs life span in amyotrophic lateral sclerosis model mice , 2011, Neuroscience.

[17]  W. Maret Redox biochemistry of mammalian metallothioneins , 2011, JBIC Journal of Biological Inorganic Chemistry.

[18]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[19]  F. Neese,et al.  Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The (Cu2O2)(2+) Core Revisited. , 2011, Journal of chemical theory and computation.

[20]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[21]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[22]  R. Ahuja,et al.  Relativity and the lead-acid battery. , 2010, Physical review letters.

[23]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[24]  Pedro Alexandrino Fernandes,et al.  Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for zinc complexes , 2009, J. Comput. Chem..

[25]  M. Cunningham,et al.  Zinc: The brain's dark horse , 2009, Synapse.

[26]  Yuan Li,et al.  Coordination dynamics of zinc in proteins. , 2009, Chemical reviews.

[27]  F. Neese,et al.  Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange , 2009 .

[28]  M. Hagemann,et al.  Strong intramolecular Si-N interactions in the chlorosilanes Cl3-nHnSiOCH2CH2NMe2 (n = 1-3). , 2008, Inorganic chemistry.

[29]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. III. , 2008, Chemical Society reviews.

[30]  Martin J Field,et al.  The pDynamo Program for Molecular Simulations using Hybrid Quantum Chemical and Molecular Mechanical Potentials. , 2008, Journal of chemical theory and computation.

[31]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[32]  H. Vahrenkamp Why does nature use zinc--a personal view. , 2007, Dalton transactions.

[33]  Maria João Ramos,et al.  The carboxylate shift in zinc enzymes: a computational study. , 2007, Journal of the American Chemical Society.

[34]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[35]  K. Hsia,et al.  Crystal structural analysis and metal‐dependent stability and activity studies of the ColE7 endonuclease domain in complex with DNA/Zn2+ or inhibitor/Ni2+ , 2006, Protein science : a publication of the Protein Society.

[36]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[37]  Donald G Truhlar,et al.  Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. , 2005, The journal of physical chemistry. A.

[38]  H. Schmidbaur,et al.  Understanding gold chemistry through relativity , 2005 .

[39]  S. Grimme,et al.  Spin-component scaled second-order Møller–Plesset perturbation theory for the calculation of molecular geometries and harmonic vibrational frequencies , 2004 .

[40]  Robert J.P. Williams,et al.  The biological chemistry of the brain and its possible evolution , 2003 .

[41]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[42]  C. Tohyama,et al.  Reduction of metallothioneins promotes the disease expression of familial amyotrophic lateral sclerosis mice in a dose‐dependent manner , 2001, The European journal of neuroscience.

[43]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[44]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[45]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[46]  M. Canagaratna,et al.  Partially Bonded Molecules from the Solid State to the Stratosphere , 1997 .

[47]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283-290) , 1995 .

[48]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[49]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[50]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[51]  Frank Neese,et al.  Software update: the ORCA program system, version 4.0 , 2018 .

[52]  D. Truhlar,et al.  Minimally augmented Karlsruhe basis sets , 2011 .

[53]  Elizabeth A. Amin,et al.  Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory. , 2008, Journal of chemical theory and computation.

[54]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .