Discovery of biological networks from diverse functional genomic data

[1]  Simon Kasif,et al.  The art of gene function prediction , 2006, Nature Biotechnology.

[2]  Matthew A. Hibbs,et al.  Finding function: evaluation methods for functional genomic data , 2006, BMC Genomics.

[3]  Robert E. Schapire,et al.  Hierarchical multi-label prediction of gene function , 2006, Bioinform..

[4]  Nir Friedman,et al.  Towards an Integrated Protein-Protein Interaction Network , 2005, RECOMB.

[5]  Ian M. Donaldson,et al.  The Biomolecular Interaction Network Database and related tools 2005 update , 2004, Nucleic Acids Res..

[6]  Ned S. Wingreen,et al.  Finding regulatory modules through large-scale gene-expression data analysis , 2003, Bioinform..

[7]  David Botstein,et al.  GO: : TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes , 2004, Bioinform..

[8]  Sean R Eddy,et al.  What is Bayesian statistics? , 2004, Nature Biotechnology.

[9]  J. Beliakoff,et al.  Hsp90: an emerging target for breast cancer therapy , 2004, Anti-cancer drugs.

[10]  L. Whitesell,et al.  Altered Hsp90 function in cancer: a unique therapeutic opportunity. , 2004, Molecular cancer therapeutics.

[11]  D. Taub,et al.  Anomalous expression of the HLA-DR alpha and beta chains in ovarian and other cancers , 2004, Cancer biology & therapy.

[12]  Julien Gagneur,et al.  Modular decomposition of protein-protein interaction networks , 2004, Genome Biology.

[13]  J. Mellor,et al.  Cbf1p Is Required for Chromatin Remodeling at Promoter-proximal CACGTG Motifs in Yeast* , 2004, Journal of Biological Chemistry.

[14]  Francis D. Gibbons,et al.  Predicting protein complex membership using probabilistic network reliability. , 2004, Genome research.

[15]  Ting Chen,et al.  Mapping gene ontology to proteins based on protein-protein interaction data , 2004, Bioinform..

[16]  C. Cardozo,et al.  Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase. , 2004, Molecular biology of the cell.

[17]  S. Kasif,et al.  Whole-genome annotation by using evidence integration in functional-linkage networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[19]  David Botstein,et al.  Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. , 2003, Molecular biology of the cell.

[20]  Nello Cristianini,et al.  Kernel-Based Data Fusion and Its Application to Protein Function Prediction in Yeast , 2003, Pacific Symposium on Biocomputing.

[21]  Anton J. Enright,et al.  Detection of functional modules from protein interaction networks , 2003, Proteins.

[22]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[23]  J. Rothberg,et al.  Gaining confidence in high-throughput protein interaction networks , 2004, Nature Biotechnology.

[24]  G. Sumara,et al.  A Probabilistic Functional Network of Yeast Genes , 2004 .

[25]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[26]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[27]  Joel S. Bader,et al.  Greedily building protein networks with confidence , 2003, Bioinform..

[28]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Stanley Letovsky,et al.  Predicting protein function from protein/protein interaction data: a probabilistic approach , 2003, ISMB.

[30]  A. Owen,et al.  A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae) , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Shmuel Sattath,et al.  How reliable are experimental protein-protein interaction data? , 2003, Journal of molecular biology.

[32]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[33]  Christian von Mering,et al.  STRING: a database of predicted functional associations between proteins , 2003, Nucleic Acids Res..

[34]  M. Tyers,et al.  The GRID: The General Repository for Interaction Datasets , 2003, Genome Biology.

[35]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[36]  D. Botstein,et al.  Genome-wide Analysis of Gene Expression Regulated by the Calcineurin/Crz1p Signaling Pathway in Saccharomyces cerevisiae * , 2002, The Journal of Biological Chemistry.

[37]  Bruce Stillman,et al.  Yph1p, an ORC-Interacting Protein Potential Links between Cell Proliferation Control, DNA Replication, and Ribosome Biogenesis , 2002, Cell.

[38]  G. Faye,et al.  Physical interaction of Cdc28 with Cdc37 in Saccharomyces cerevisiae , 2002, Molecular Genetics and Genomics.

[39]  D. Tollervey,et al.  Yeast Pescadillo is required for multiple activities during 60S ribosomal subunit synthesis. , 2002, RNA.

[40]  J. Woolford,et al.  Saccharomyces cerevisiae nucleolar protein Nop7p is necessary for biogenesis of 60S ribosomal subunits. , 2002, RNA.

[41]  T. van Laar,et al.  A role for Rad23 proteins in 26S proteasome-dependent protein degradation? , 2002, Mutation research.

[42]  D. Tollervey,et al.  Erratum: Yeast Pescadillo is required for multiple activities during 60S ribosomal subunit synthesis (RNA (2002) 8 (626-636)) , 2002 .

[43]  C. Ball,et al.  Saccharomyces Genome Database. , 2002, Methods in enzymology.

[44]  D. Botstein,et al.  Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. , 2001, Molecular biology of the cell.

[45]  J. Shabanowitz,et al.  Composition and functional characterization of yeast 66S ribosome assembly intermediates. , 2001, Molecular cell.

[46]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[47]  P. Brown,et al.  New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. , 2000, Molecular biology of the cell.

[48]  Youyong Zhu,et al.  Genetic diversity and disease control in rice , 2000, Nature.

[49]  D. Botstein,et al.  Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth , 2000, Nature.

[50]  L. Prakash,et al.  Nucleotide excision repair in yeast. , 2000, Mutation research.

[51]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[52]  P. Brown,et al.  Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  O. Donzé,et al.  The molecular chaperone Cdc37 is required for Ste11 function and pheromone‐induced cell cycle arrest , 2000, FEBS letters.

[54]  D. Morgan,et al.  Cdc37 Promotes the Stability of Protein Kinases Cdc28 and Cak1 , 2000, Molecular and Cellular Biology.

[55]  Kara Dolinski,et al.  Integrating functional genomic information into the Saccharomyces Genome Database , 2000, Nucleic Acids Res..

[56]  Marek J. Druzdzel,et al.  SMILE: Structural Modeling, Inference, and Learning Engine and GeNIE: A Development Environment for Graphical Decision-Theoretic Models , 1999, AAAI/IAAI.

[57]  L. Johnston,et al.  First the CDKs, now the DDKs. , 1999, Trends in cell biology.

[58]  Michael Q. Zhang,et al.  SCPD: a promoter database of the yeast Saccharomyces cerevisiae , 1999, Bioinform..

[59]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[60]  D. Botstein,et al.  The transcriptional program of sporulation in budding yeast. , 1998, Science.

[61]  Li Chen,et al.  Rad23 links DNA repair to the ubiquitin/proteasome pathway , 1998, Nature.

[62]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[63]  T. Hunter,et al.  Cdc37: a protein kinase chaperone? , 1997, Trends in cell biology.

[64]  T. Giddings,et al.  The Yeast CDC37 Gene Interacts with MPS1 and Is Required for Proper Execution of Spindle Pole Body Duplication , 1997, The Journal of cell biology.

[65]  I. Herskowitz,et al.  Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[66]  T. Formosa,et al.  Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo , 1992, Molecular and cellular biology.

[67]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[68]  R. Fisher FREQUENCY DISTRIBUTION OF THE VALUES OF THE CORRELATION COEFFIENTS IN SAMPLES FROM AN INDEFINITELY LARGE POPU;ATION , 1915 .