Physical properties of organic and biomaterials: Fundamentals and applications

[1]  C. Michal,et al.  Strain Dependent Local Phase Transitions Observed during Controlled Supercontraction Reveal Mechanisms in Spider Silk , 2004 .

[2]  Nevill Mott,et al.  Conduction in non-crystalline materials , 1989 .

[3]  Fritz Vollrath,et al.  In Situ X-ray Diffraction during Forced Silking of Spider Silk , 1999 .

[4]  Randolph V Lewis,et al.  Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties , 2012, Proceedings of the National Academy of Sciences.

[5]  Takakazu Yamamoto,et al.  Electrical conductivity of iodine adducts of nylon 6 and other non-conjugated polymers , 1986 .

[6]  J. Hwang,et al.  Flexible Organic Thin‐Film Transistors with Silk Fibroin as the Gate Dielectric , 2011, Advanced materials.

[7]  Frederik C. Krebs,et al.  Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating , 2012, Nature Communications.

[8]  L. Jelinski,et al.  Solid-State 13C NMR of Nephila clavipes Dragline Silk Establishes Structure and Identity of Crystalline Regions , 1994 .

[9]  David L. Kaplan,et al.  Dynamic Protein−Water Relationships during β-Sheet Formation , 2008 .

[10]  A. Barth Infrared spectroscopy of proteins. , 2007, Biochimica et biophysica acta.

[11]  David L Kaplan,et al.  Silk nanospheres and microspheres from silk/pva blend films for drug delivery. , 2010, Biomaterials.

[12]  Mun'delanji C. Vestergaard,et al.  Direct Electrochemical Oxidation of Cellulose: A Cellulose-Based Fuel Cell System , 2010 .

[13]  F. Kremer,et al.  Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy , 2007, The European physical journal. E, Soft matter.

[14]  Peter M Vogt,et al.  Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit , 2006, Journal of cellular and molecular medicine.

[15]  R. Haddon,et al.  Temporal processes in a polymeric anion-based organic superconductor , 1999 .

[16]  H. Hansma,et al.  Molecular nanosprings in spider capture-silk threads , 2003, Nature materials.

[17]  R. E. Marsh,et al.  An investigation of the structure of silk fibroin. , 1955, Biochimica et biophysica acta.

[18]  Debye relaxation in high magnetic fields , 2008, 0806.4402.

[19]  Ingi Agnarsson,et al.  Spider silk as a novel high performance biomimetic muscle driven by humidity , 2009, Journal of Experimental Biology.

[20]  L W Jelinski,et al.  13C NMR of Nephila clavipes major ampullate silk gland. , 1996, Biophysical journal.

[21]  Ute Zschieschang,et al.  Organic electronics on paper , 2004 .

[22]  M. Miura,et al.  Carbon fiber from natural biopolymer Bombyx mori silk fibroin with iodine treatment , 2007 .

[23]  Z. Shao,et al.  Analysis of spider silk in native and supercontracted states using Raman spectroscopy , 1999 .

[24]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[25]  David L. Kaplan,et al.  Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[26]  M. Lenzlinger,et al.  Fowler‐Nordheim Tunneling into Thermally Grown SiO2 , 1969 .

[27]  K. Mirica,et al.  Mechanical drawing of gas sensors on paper. , 2012, Angewandte Chemie.

[28]  David L Eaton,et al.  A road map to stable, soluble, easily crystallized pentacene derivatives. , 2002, Organic letters.

[29]  Y. Termonia,et al.  Nylons from Nature: Synthetic Analogs to Spider Silk , 1998 .

[30]  S. Kirkpatrick Percolation and Conduction , 1973 .

[31]  J. Brooks,et al.  Low electrical conductivity threshold and crystalline morphology of single-walled carbon nanotubes – high density polyethylene nanocomposites characterized by SEM, Raman spectroscopy and AFM , 2007 .

[32]  David L Kaplan,et al.  Self-assembly of genetically engineered spider silk block copolymers. , 2009, Biomacromolecules.

[33]  P. Zhou,et al.  Toughness of Spider Silk at High and Low Temperatures , 2005 .

[34]  A. P. Gonçalves,et al.  Robust properties of the superconducting ferromagnet UCoGe , 2011 .

[35]  David L Kaplan,et al.  Regulation of silk material structure by temperature-controlled water vapor annealing. , 2011, Biomacromolecules.

[36]  Hagen Klauk,et al.  Organic thin-film transistors. , 2010, Chemical Society reviews.

[37]  Steve F. A. Acquah,et al.  Carbon nanotubes on a spider silk scaffold , 2013, Nature Communications.

[38]  R. Lewis,et al.  Structure of a protein superfiber: spider dragline silk. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Gierschner,et al.  A new functionalization strategy for pentacene. , 2007, Chemical communications.

[40]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[41]  B. Meier,et al.  The molecular structure of spider dragline silk: Folding and orientation of the protein backbone , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. W. Work A Comparative Study of the Supercontraction of Major Ampullate Silk Fibers of Orb-Web-Building Spiders (Araneae) , 1981 .

[43]  Rajesh Rajamani,et al.  Flexible solid-state paper based carbon nanotube supercapacitor , 2012 .

[44]  L. MacGillivray On substituents, steering, and stacking to control properties of the organic solid state , 2004 .

[45]  R. Forbes Call for experimental test of a revised mathematical form for empirical field emission current-voltage characteristics , 2008 .

[46]  J. Gosline,et al.  The mechanical design of spider silks: from fibroin sequence to mechanical function. , 1999, The Journal of experimental biology.

[47]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[48]  P. Grant ELECTRONIC STRUCTURE OF THE 2:1 CHARGE TRANSFER SALTS OF TMTCF , 1983 .

[49]  Z. Shao,et al.  The effect of solvents on the contraction and mechanical properties of spider silk , 1999 .

[50]  E. Lopes,et al.  Physical characterization of functionalized spider silk: electronic and sensing properties , 2011, Science and technology of advanced materials.

[51]  Oskar Liivak,et al.  Supercontraction and Backbone Dynamics in Spider Silk: 13C and 2H NMR Studies , 2000 .

[52]  M. E. Demont,et al.  Spider silk as rubber , 1984, Nature.

[53]  Takakazu Yamamoto,et al.  Electrical conducting properties of iodine-nylon-6 adduct and iodine-nylon-6-carbon composite , 1984 .

[54]  M. Elices,et al.  Controlled supercontraction tailors the tensile behaviour of spider silk , 2003 .

[55]  Janelle E. Jenkins,et al.  Solid-state NMR comparison of various spiders' dragline silk fiber. , 2010, Biomacromolecules.

[56]  D. Graf,et al.  Role of anion size, magnetic moment, and disorder on the properties of the organic conductor κ-(BETS)2Ga1-xFexCl4-yBry , 2009, 0909.1340.

[57]  J. Yarger,et al.  WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk. , 2004, Journal of the American Chemical Society.

[58]  M. Pardede,et al.  Intensity distributions of enhanced H emission from laser-induced low-pressure He plasma and a suggested He-assisted excitation mechanism , 2009 .

[59]  David L Kaplan,et al.  Silk as a Biomaterial. , 2007, Progress in polymer science.

[60]  D. Kaplan,et al.  Dielectric relaxation spectroscopy of hydrated and dehydrated silk fibroin cast from aqueous solution. , 2010, Biomacromolecules.

[61]  F. Kremer,et al.  Supercontraction in Nephila spider dragline silk - Relaxation into equilibrium state , 2011 .

[62]  Steve F. A. Acquah,et al.  Assembly of cross-linked multi-walled carbon nanotube mats , 2010 .

[63]  P. Morales,et al.  Spider-silk-based fabrication of nanogaps and wires , 2012, Nanotechnology.

[64]  Sankar Subramanian,et al.  Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. , 2008, Journal of the American Chemical Society.

[65]  Y. Iye,et al.  Field-induced phase transition in Kish graphite , 1998 .

[66]  F. Guinea,et al.  Edge and surface states in the quantum Hall effect in graphene , 2005, cond-mat/0509709.

[67]  J. Brooks,et al.  Note: adhesive stamp electrodes using spider silk masks for electronic transport measurements of supra-micron sized samples. , 2012, The Review of scientific instruments.

[68]  Yan Liu,et al.  Magnetotactic bacteria: promising biosorbents for heavy metals , 2012, Applied Microbiology and Biotechnology.

[69]  Ye Sun,et al.  Self-assembly method for the preparation of near-infrared fluorescent spider silk coated with CdTe nanocrystals , 2007 .

[70]  H. Kajiura,et al.  Carbonization and graphitization behavior of iodine-treated coal tar pitch , 1997 .

[71]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[72]  Mitch Jacoby Learning From Spider Silk , 2013 .

[73]  D. Porter,et al.  Proline and processing of spider silks. , 2008, Biomacromolecules.

[74]  Z. Shao,et al.  Elasticity of spider silks. , 2008, Biomacromolecules.

[75]  Y. Wang,et al.  Three-Layered Sericins around the Silk Fibroin Fiber from Bombyx mori Cocoon and their Amino Acid Composition , 2011 .

[76]  A. Barth,et al.  What vibrations tell about proteins , 2002, Quarterly Reviews of Biophysics.

[77]  T. Ishiguro,et al.  Diffusive Conductivity in Quasi One-Dimensional Conductor TMTTF-TCNQ , 1980 .

[78]  G. Whitesides,et al.  Diagnostics for the developing world: microfluidic paper-based analytical devices. , 2010, Analytical chemistry.

[79]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[80]  David L Kaplan,et al.  Water-insoluble silk films with silk I structure. , 2010, Acta biomaterialia.