A Four Step Feedback Iteration and Its Applications in Fractals

Fractals play a vital role in modeling the natural environment. The present aim is to investigate the escape criterion to generate specific fractals such as Julia sets, Mandelbrot sets and Multi-corns via F-iteration using complex functions h(z)=zn+c, h(z)=sin(zn)+c and h(z)=ezn+c, n≥2,c∈C. We observed some beautiful Julia sets, Mandelbrot sets and Multi-corns for n = 2, 3 and 4. We generalize the algorithms of the Julia set and Mandelbrot set to visualize some Julia sets, Mandelbrot sets and Multi-corns. Moreover, we calculate image generation time in seconds at different values of input parameters.

[1]  Asifa Tassaddiq General escape criteria for the generation of fractals in extended Jungck-Noor orbit , 2022, Math. Comput. Simul..

[2]  Wei Wang,et al.  Generation of Antifractals via Hybrid Picard-Mann Iteration , 2020, IEEE Access.

[3]  Shin Min Kang,et al.  Fractal Generation in Modified Jungck–S Orbit , 2019, IEEE Access.

[4]  Valery V. Strotov,et al.  Object distance estimation algorithm for real-time FPGA-based stereoscopic vision system , 2018, Remote Sensing.

[5]  Ramón Alonso-Sanz,et al.  Biomorphs with memory , 2018, Int. J. Parallel Emergent Distributed Syst..

[6]  Agnieszka Lisowska,et al.  Biomorphs via Modified Iterations , 2016 .

[7]  Theodore Kim Quaternion Julia Set Shape Optimization , 2015, Comput. Graph. Forum.

[8]  Renu Chugh,et al.  Julia sets and Mandelbrot sets in Noor orbit , 2014, Appl. Math. Comput..

[9]  Renu Chugh,et al.  Strong Convergence of a New Three Step Iterative Scheme in Banach Spaces , 2012 .

[10]  Suthep Suantai,et al.  On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval , 2011, J. Comput. Appl. Math..

[11]  Bhagwati Prasad,et al.  Fractals via Ishikawa Iteration , 2011 .

[12]  Vasileios Drakopoulos,et al.  An overview of parallel visualisation methods for Mandelbrot and Julia sets , 2003, Comput. Graph..

[13]  Guangxing Wang,et al.  COMPOSED ACCELERATED ESCAPE TIME ALGORITHM TO CONSTRUCT THE GENERAL MANDELBROT SETS , 2001 .

[14]  Robert L. Devaney,et al.  A First Course In Chaotic Dynamical Systems: Theory And Experiment , 1993 .

[15]  P. J. Rippon,et al.  On the structure of the Mandelbar set , 1989 .

[16]  V. Varadan,et al.  COMMENT: On the symmetries of the Julia sets for the process z==>zp+c , 1987 .

[17]  C A Pickover,et al.  Biom orphs: Computer Displays of Biological Forms Generated from Mathematical Feedback Loops , 1986, Comput. Graph. Forum.

[18]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[19]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[20]  Yuming Chu,et al.  Fixed Point Results for Fractal Generation of Complex Polynomials Involving Sine Function via Non-Standard Iterations , 2020, IEEE Access.

[21]  Shin Min Kang,et al.  Mandelbrot and Julia Sets via Jungck–CR Iteration With $s$ –Convexity , 2019, IEEE Access.

[22]  Muhammad Tanveer,et al.  Boundaries of Filled Julia Sets in Generalized Jungck Mann Orbit , 2019, IEEE Access.

[23]  Jing Liu,et al.  Fixed Point Results for Fractal Generation in Extended Jungck–SP Orbit , 2019, IEEE Access.

[24]  Mamta Rani,et al.  Effect of Stochastic Noise on Superior Julia Sets , 2009, Journal of Mathematical Imaging and Vision.

[25]  S. Ishikawa Fixed points by a new iteration method , 1974 .