Robust adhesion of flower-like few-layer graphene nanoclusters

[1]  E Weinan,et al.  Multiscale modeling , 2019, Scholarpedia.

[2]  Yunfeng Shi,et al.  Wetting transparency of graphene. , 2012, Nature materials.

[3]  Z. Siwy,et al.  Electric-field-induced wetting and dewetting in single hydrophobic nanopores. , 2011, Nature nanotechnology.

[4]  Lei Jiang,et al.  In situ imaging of multiphase bio-interfaces at the micro-/nanoscale. , 2011, Small.

[5]  C. Gu,et al.  Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography , 2011, Nanotechnology.

[6]  Rui Huang Graphene: show of adhesive strength. , 2011, Nature nanotechnology.

[7]  Liping Wang,et al.  Highly hydrophobic and adhesive performance of graphene films , 2011 .

[8]  M. Dunn,et al.  Ultrastrong adhesion of graphene membranes. , 2011, Nature nanotechnology.

[9]  Gregory J. Ehlert,et al.  Superhydrophobic functionalized graphene aerogels. , 2011, ACS applied materials & interfaces.

[10]  Hui-di Zhou,et al.  Gecko-inspired synthesis of superhydrophobic ZnO surfaces with high water adhesion , 2011 .

[11]  Jianfeng Chen,et al.  Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties , 2011, Nanotechnology.

[12]  C. Hsieh,et al.  Water/oil repellency and work of adhesion of liquid droplets on graphene oxide and graphene surfaces , 2011 .

[13]  Chao Gao,et al.  Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. , 2011, Nanoscale.

[14]  S. Kang,et al.  Hydrophobic properties of colloidal films coated with multi-wall carbon nanotubes/reduced graphene oxide multilayers , 2011 .

[15]  Jun Ding,et al.  Electrically Adjustable, Super Adhesive Force of a Superhydrophobic Aligned MnO2 Nanotube Membrane , 2011 .

[16]  Mingjie Liu,et al.  Switchable Adhesion on Liquid/Solid Interfaces , 2010 .

[17]  Haodan Jiang,et al.  Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling. , 2010, ACS applied materials & interfaces.

[18]  Zhong-Zhen Yu,et al.  Superhydrophobic to Superhydrophilic Wetting Control in Graphene Films , 2010, Advanced materials.

[19]  Rong Xiao,et al.  Uni-directional liquid spreading on asymmetric nanostructured surfaces. , 2010, Nature materials.

[20]  Bharat Bhushan,et al.  Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[21]  H. Tsao,et al.  High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects , 2009 .

[22]  Noureddine Abidi,et al.  Wettability and surface free energy of graphene films. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[23]  François M. Peeters,et al.  Water on graphene: Hydrophobicity and dipole moment using density functional theory , 2009 .

[24]  Lei Jiang,et al.  Wetting behavior at micro-/nanoscales: direct imaging of a microscopic water/air/solid three-phase interface. , 2009, Small.

[25]  D. Aurbach,et al.  “Petal Effect” on Surfaces Based on Lycopodium: High-Stick Surfaces Demonstrating High Apparent Contact Angles , 2009 .

[26]  C. N. R. Rao,et al.  Synthesis, Structure, and Properties of Boron‐ and Nitrogen‐Doped Graphene , 2009, 0902.3077.

[27]  Koen Schouteden,et al.  Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition , 2008, Nanotechnology.

[28]  V. Radmilović,et al.  Substrate-free gas-phase synthesis of graphene sheets. , 2008, Nano letters.

[29]  M. Kaplan Raindrops on roses , 2008 .

[30]  Insung S. Choi,et al.  Fabrication of Hairy Polymeric Films Inspired by Geckos: Wetting and High Adhesion Properties , 2008 .

[31]  Lei Jiang,et al.  Petal effect: a superhydrophobic state with high adhesive force. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[32]  Lijie Ci,et al.  Gecko-inspired carbon nanotube-based self-cleaning adhesives. , 2008, Nano letters.

[33]  A. Amirfazli,et al.  Superhydrophobic Surfaces: Adhesive Strongly to Water? , 2007 .

[34]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[35]  Michael Nosonovsky Model for solid-liquid and solid-solid friction of rough surfaces with adhesion hysteresis. , 2007, The Journal of chemical physics.

[36]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[37]  Lichao Gao,et al.  Contact angle hysteresis explained. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[38]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Kimberly L. Turner,et al.  A batch fabricated biomimetic dry adhesive , 2005 .

[40]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[41]  Jurriaan Huskens,et al.  Self‐Assembled Monolayer Coatings on Nanostencils for the Reduction of Materials Adhesion , 2003 .

[42]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Chandler,et al.  Hydrophobicity at Small and Large Length Scales , 1999 .

[44]  M. Stelzle,et al.  Vapor phase self-assembly of fluorinated monolayers on silicon and germanium oxide , 1997 .

[45]  Xun Guo,et al.  A water collecting and recycling structure for silicon-based micro direct methanol fuel cells , 2012 .

[46]  B. Bhushan,et al.  Lotus Versus Rose: Biomimetic Surface Effects , 2012 .

[47]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .