Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms.

Surface plasmon (SP) technologies exploit the spectral and spatial properties of collective electronic oscillations in noble metals placed in an incident optical field. Yet the SP local density of states (LDOS), which rule the energy transducing phenomena between the SP and the electromagnetic field, is much less exploited. Here, we use two-photon luminescence (TPL) microscopy to reveal the SP-LDOS in thin single-crystalline triangular gold nanoprisms produced by a quantitative one-pot synthesis at room temperature. Variations of the polarization and the wavelength of the incident light redistribute the TPL intensity into two-dimensional plasmonic resonator patterns that are faithfully reproduced by theoretical simulations. We demonstrate that experimental TPL maps can be considered as the convolution of the SP-LDOS with the diffraction-limited Gaussian light beam. Finally, the SP modal distribution is tuned by the spatial coupling of nanoprisms, thus allowing a new modal design of plasmonic information processing devices.

[1]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[2]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[3]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[4]  A. Bouhelier,et al.  Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires. , 2011, ACS nano.

[5]  A. Dereux,et al.  Imaging the local density of states of optical corrals. , 2002, Physical review letters.

[6]  R. Bachelot,et al.  Selective Excitation of Plasmon Resonances of Single Au Triangles by Polarization-Dependent Light Excitation , 2012 .

[7]  D. Koller,et al.  Leakage radiation microscopy of surface plasmon polaritons , 2008, 1002.0725.

[8]  Younan Xia,et al.  Optical near-field mapping of plasmonic nanoprisms. , 2008, Nano letters.

[9]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[10]  Yingzhou Huang,et al.  Branched silver nanowires as controllable plasmon routers. , 2010, Nano letters.

[11]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[12]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[13]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[14]  Pierre-Michel Adam,et al.  Short range plasmon resonators probed by photoemission electron microscopy. , 2008, Nano letters.

[15]  W. Sigle,et al.  Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets , 2011 .

[16]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[17]  F. J. García de abajo,et al.  Probing the photonic local density of states with electron energy loss spectroscopy. , 2007, Physical review letters.

[18]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[19]  A. Polman,et al.  Modal decomposition of surface--plasmon whispering gallery resonators. , 2009, Nano letters.

[20]  Erik Dujardin,et al.  Scanning optical microscopy modeling in nanoplasmonics , 2012 .

[21]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[22]  A. Dereux,et al.  The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity. , 2009, Nano letters.

[23]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[24]  Lukas Novotny,et al.  Continuum generation from single gold nanostructures through near-field mediated intraband transitions , 2003 .

[25]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[26]  Jonathan Grandidier,et al.  Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. , 2009, Nano letters.

[27]  L. Andrew Lyon,et al.  Unidirectional Plasmon Propagation in Metallic Nanowires , 2000 .

[28]  Hiromi Okamoto,et al.  Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. , 2005, The journal of physical chemistry. B.

[29]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[30]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[31]  Hong Wei,et al.  Cascaded logic gates in nanophotonic plasmon networks , 2011, Nature communications.

[32]  Urs Sennhauser,et al.  Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. , 2010, Nature communications.

[33]  Shen,et al.  Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. , 1986, Physical review. B, Condensed matter.

[34]  Claude E. Shannon,et al.  A symbolic analysis of relay and switching circuits , 1938, Transactions of the American Institute of Electrical Engineers.

[35]  A. Dereux,et al.  Imaging surface photonic states with a circularly polarized tip , 2004 .

[36]  Petru Ghenuche,et al.  Spectroscopic mode mapping of resonant plasmon nanoantennas. , 2008, Physical review letters.

[37]  Carsten Rockstuhl,et al.  Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. , 2009, Nano letters.

[38]  Antao Chen,et al.  Integration of photonic and silver nanowire plasmonic waveguides. , 2008, Nature nanotechnology.

[39]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[40]  G. Wiederrecht,et al.  Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. , 2005, Physical review letters.

[41]  J. Zhao,et al.  Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. , 2008, Accounts of chemical research.

[42]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[43]  P. Schuck,et al.  Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy. , 2011, Physical review letters.