Molecular Dynamics Simulations of Nanodiamond Graphitization

Nanocarbons have attracted great interest due to their potential applications in nanoscale devices, medicine, lubrication and composite materials. Recently, nanocarbons with a variety of morphologies are reported to have been obtained after annealing nanodiamonds above 1,200 K. Here, we have investigated the transformation of 2–5 nm nanodiamond particles upon annealing using molecular dynamics simulations. The simulations show that nanodiamonds undergo annealing-induced graphitization by a progressive sp3 to sp2 conversion of carbon atoms that begins at the surface. The extent of this conversion depends on the size and morphology of the nanodiamond. It is found that while graphitization proceeds easily from {111} surfaces towards the core, the presence of {100} surfaces leads to residual sp3 carbon atoms. We will also discuss different steps involved in nanodiamond graphitization, the formation of onion-like carbon and vibrational spectra of these structures.

[1]  M. Fujii,et al.  Diamond nanoparticles to carbon onions transformation: X-ray diffraction studies , 2002 .

[2]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[3]  Huan-Cheng Chang,et al.  Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. , 2005, Journal of the American Chemical Society.

[4]  A. Chuvilin,et al.  Closed curved graphite-like structures formation on micron-size diamond , 1998 .

[5]  Dieter M. Gruen,et al.  Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions , 1994 .

[6]  A. Chuvilin,et al.  Onion-like carbon from ultra-disperse diamond , 1994 .

[7]  S. Russo,et al.  Hydrogenation of nanodiamond surfaces: structure and effects on crystalline stability , 2003 .

[8]  P. Ajayan,et al.  Carbon onions as nanoscopic pressure cells for diamond formation , 1996, Nature.

[9]  J. D. Johnson,et al.  Diamonds in detonation soot , 1988, Nature.

[10]  G. Sakovich,et al.  Properties of ultrafine diamond clusters from detonation synthesis , 1994 .

[11]  C. Pantea,et al.  Graphitization of diamond powders of different sizes at high pressure–high temperature , 2004 .

[12]  F. Banhart The transformation of graphitic onions to diamond under electron irradiation , 1997 .

[13]  S. Russo,et al.  Coexistence of bucky diamond with nanodiamond and fullerene carbon phases , 2003 .

[14]  Giulia Galli,et al.  Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. , 2003, Physical review letters.

[15]  Amanda S. Barnard,et al.  Stability of Nanodiamond , 2006 .

[16]  N. Xu,et al.  Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient , 2002 .

[17]  Keiichi Yamamoto,et al.  Electron energy-loss spectroscopy of carbon onions , 1999 .

[18]  D. Ugarte Curling and closure of graphitic networks under electron-beam irradiation , 1992, Nature.

[19]  Zhi Qiao,et al.  Graphitization and microstructure transformation of nanodiamond to onion-like carbon , 2006 .

[20]  G. Galli,et al.  Ultradispersity of diamond at the nanoscale , 2003, Nature materials.

[21]  K. Pandey New dimerized-chain model for the reconstruction of the diamond (111)-(2 × 1) surface , 1982 .

[22]  O. Mykhaylyk,et al.  Transformation of nanodiamond into carbon onions: A comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy , 2005 .

[23]  Olga Shenderova,et al.  Ultrananocrystalline Diamond: Synthesis, Properties, and Applications , 2006 .

[24]  Vladimir L. Kuznetsov,et al.  Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface , 1999 .

[25]  D. Brenner,et al.  Carbon nanostructures for advanced composites , 2006 .

[26]  C. Pantea,et al.  High pressure study of graphitization of diamond crystals , 2002 .

[27]  R. Car,et al.  A microscopic model for surface-induced diamond-to-graphite transitions , 1996, Nature.

[28]  A. Vul,et al.  The structure of diamond nanoclusters , 1999 .

[29]  Saber M Hussain,et al.  Are diamond nanoparticles cytotoxic? , 2007, The journal of physical chemistry. B.

[30]  Erik Pierstorff,et al.  Active nanodiamond hydrogels for chemotherapeutic delivery. , 2007, Nano letters.

[31]  G. Vignoles,et al.  Molecular dynamics evidences of the full graphitization of a nanodiamond annealed at 1500 K , 2008 .

[32]  J. Angus,et al.  Graphitization Effects on Diamond Surfaces and the Diamond/Graphite Interface , 1996 .

[33]  E. Steel,et al.  Interstellar diamonds in meteorites , 1987, Nature.

[34]  A. Chuvilin,et al.  Effect of explosion conditions on the structure of detonation soots: Ultradisperse diamond and onion carbon , 1994 .

[35]  J. Margrave,et al.  Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications , 2005 .

[36]  C. Wang,et al.  Laser-induced graphitization on a diamond (111) surface. , 2000, Physical review letters.

[37]  Pulickel M. Ajayan,et al.  The formation, annealing and self-compression of carbon onions under electron irradiation , 1997 .

[38]  L. Curtiss,et al.  Theoretical Studies of Growth Reactions on Diamond Surfaces , 2004 .

[39]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[40]  Electron emission from diamond nanoparticles on metal tips , 2003 .

[41]  Vladimir L. Kuznetsov,et al.  Nanodiamond and onion-like carbon polymer nanocomposites , 2007 .

[42]  M. Yudasaka,et al.  Nano-aggregates of single-walled graphitic carbon nano-horns , 1999 .

[43]  D. Brownlee,et al.  Possible in situ formation of meteoritic nanodiamonds in the early Solar System , 2002, Nature.

[44]  H. Dai,et al.  Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. , 2004, Journal of the American Chemical Society.

[45]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids , 1976 .

[46]  Susan B. Sinnott,et al.  Molecular dynamics simulations of the filling and decorating of carbon nanotubules , 1999 .

[47]  T. W. Żerda,et al.  Graphitization of small diamond cluster - : Molecular dynamics simulation , 2006 .

[48]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[49]  Q. Y. Chen,et al.  Spherical nanometer-sized diamond obtained from detonation , 2000 .

[50]  G. Seifert,et al.  Concentric-shell fullerenes and diamond particles: A molecular-dynamics study , 1999 .

[51]  Amanda Barnard,et al.  Structural Relaxation and Relative Stability of Nanodiamond Morphologies , 2002 .

[52]  Arvind Agarwal,et al.  Microstructural and biological properties of nanocrystalline diamond coatings , 2006 .

[53]  Michael Sternberg,et al.  Crystallinity and surface electrostatics of diamond nanocrystals , 2007 .

[54]  Valerii Yu. Dolmatov,et al.  Detonation synthesis ultradispersed diamonds: properties and applications , 2001 .