Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds

We present a semi-local convergence analysis of the Gauss-Newton method for solving convex composite optimization problems in Riemannian manifolds using the notion of quasi-regularity for an initial point. Using a combination the L-average Lipszhitz condition and the center L 0 -average Lipschitz condition we introduce majorizing sequences for the Gauss-Newton method that are more precise than in earlier studies. Consequently, our semi-local convergence analysis for the Gauss-Newton method has the following advantages under the same computational cost: weaker sufficient convergence conditions; more precise estimates on the distances involved and an at least as precise information on the location of the solution.

[1]  S. Amat,et al.  On a bilinear operator free third order method on Riemannian manifolds , 2013, Appl. Math. Comput..

[2]  I. Argyros Convergence and Applications of Newton-type Iterations , 2008 .

[3]  Tamás Rapcsák,et al.  Smooth Nonlinear Optimization in Rn , 1997 .

[4]  James Lam,et al.  An approximate approach to H2 optimal model reduction , 1999, IEEE Trans. Autom. Control..

[5]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[6]  Michael C. Ferris,et al.  A Gauss—Newton method for convex composite optimization , 1995, Math. Program..

[7]  Chong Li,et al.  Gauss–Newton method for convex composite optimizations on Riemannian manifolds , 2012, J. Glob. Optim..

[8]  Xinghua Wang,et al.  Convergence of Newton's method and inverse function theorem in Banach space , 1999, Math. Comput..

[9]  Chong Li,et al.  Majorizing Functions and Convergence of the Gauss--Newton Method for Convex Composite Optimization , 2007, SIAM J. Optim..

[10]  O. P. Ferreira,et al.  Proximal Point Algorithm On Riemannian Manifolds , 2002 .

[11]  Shotaro Akaho,et al.  Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold , 2005, Neurocomputing.

[12]  Tamás Rapcsák Smooth Nonlinear Nonconvex Optimization , 2009, Encyclopedia of Optimization.

[13]  Wang Xinghua,et al.  Convergence of Newton's method and inverse function theorem in Banach space , 1999 .

[14]  Ioannis K. Argyros,et al.  Extending the applicability of Newton's method on Lie groups , 2013, Appl. Math. Comput..

[15]  Ioannis K. Argyros,et al.  Weaker conditions for the convergence of Newton's method , 2012, J. Complex..

[16]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[17]  Chong Li,et al.  Convergence behavior of Gauss-Newton's method and extensions of the Smale point estimate theory , 2010, J. Complex..

[18]  Steven Thomas Smith,et al.  Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.

[19]  Steve Smale,et al.  Algorithms for Solving Equations , 2010 .

[20]  I. Argyros,et al.  Newton’s method for approximating zeros of vector fields on Riemannian manifolds , 2009 .

[21]  Tamás Rapcsák Nonlinear Optimization Problems , 1997 .

[22]  S. Shankar Sastry,et al.  Optimization Criteria and Geometric Algorithms for Motion and Structure Estimation , 2001, International Journal of Computer Vision.

[23]  S. M. Robinson Extension of Newton's method to nonlinear functions with values in a cone , 1972 .

[24]  Habib Ammari,et al.  Nonlinear Optimization Algorithms , 2013 .

[25]  Ioannis K. Argyros,et al.  Extending the applicability of the Gauss–Newton method under average Lipschitz–type conditions , 2011, Numerical Algorithms.

[26]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[27]  I. Argyros,et al.  Computational Methods in Nonlinear Analysis:Efficient Algorithms, Fixed Point Theory and Applications , 2013 .