Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds
暂无分享,去创建一个
[1] S. Amat,et al. On a bilinear operator free third order method on Riemannian manifolds , 2013, Appl. Math. Comput..
[2] I. Argyros. Convergence and Applications of Newton-type Iterations , 2008 .
[3] Tamás Rapcsák,et al. Smooth Nonlinear Optimization in Rn , 1997 .
[4] James Lam,et al. An approximate approach to H2 optimal model reduction , 1999, IEEE Trans. Autom. Control..
[5] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[6] Michael C. Ferris,et al. A Gauss—Newton method for convex composite optimization , 1995, Math. Program..
[7] Chong Li,et al. Gauss–Newton method for convex composite optimizations on Riemannian manifolds , 2012, J. Glob. Optim..
[8] Xinghua Wang,et al. Convergence of Newton's method and inverse function theorem in Banach space , 1999, Math. Comput..
[9] Chong Li,et al. Majorizing Functions and Convergence of the Gauss--Newton Method for Convex Composite Optimization , 2007, SIAM J. Optim..
[10] O. P. Ferreira,et al. Proximal Point Algorithm On Riemannian Manifolds , 2002 .
[11] Shotaro Akaho,et al. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold , 2005, Neurocomputing.
[12] Tamás Rapcsák. Smooth Nonlinear Nonconvex Optimization , 2009, Encyclopedia of Optimization.
[13] Wang Xinghua,et al. Convergence of Newton's method and inverse function theorem in Banach space , 1999 .
[14] Ioannis K. Argyros,et al. Extending the applicability of Newton's method on Lie groups , 2013, Appl. Math. Comput..
[15] Ioannis K. Argyros,et al. Weaker conditions for the convergence of Newton's method , 2012, J. Complex..
[16] C. Udriste,et al. Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .
[17] Chong Li,et al. Convergence behavior of Gauss-Newton's method and extensions of the Smale point estimate theory , 2010, J. Complex..
[18] Steven Thomas Smith,et al. Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.
[19] Steve Smale,et al. Algorithms for Solving Equations , 2010 .
[20] I. Argyros,et al. Newton’s method for approximating zeros of vector fields on Riemannian manifolds , 2009 .
[21] Tamás Rapcsák. Nonlinear Optimization Problems , 1997 .
[22] S. Shankar Sastry,et al. Optimization Criteria and Geometric Algorithms for Motion and Structure Estimation , 2001, International Journal of Computer Vision.
[23] S. M. Robinson. Extension of Newton's method to nonlinear functions with values in a cone , 1972 .
[24] Habib Ammari,et al. Nonlinear Optimization Algorithms , 2013 .
[25] Ioannis K. Argyros,et al. Extending the applicability of the Gauss–Newton method under average Lipschitz–type conditions , 2011, Numerical Algorithms.
[26] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[27] I. Argyros,et al. Computational Methods in Nonlinear Analysis:Efficient Algorithms, Fixed Point Theory and Applications , 2013 .