Proinflammatory Signaling Regulates Hematopoietic Stem Cell Emergence

[1]  A. Sher,et al.  Type I interferons in infectious disease , 2015, Nature Reviews Immunology.

[2]  D. Traver,et al.  Discrete Notch signaling requirements in the specification of hematopoietic stem cells , 2014, The EMBO journal.

[3]  E. Gomez-Casado,et al.  VHSV G glycoprotein major determinants implicated in triggering the host type I IFN antiviral response as DNA vaccine molecular adjuvants. , 2014, Vaccine.

[4]  T. Suda,et al.  Jam1a – Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling , 2014, Nature.

[5]  J. Coll,et al.  Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules , 2014, Autophagy.

[6]  K. Mizrahi,et al.  Physiological functions of TNF family receptor/ligand interactions in hematopoiesis and transplantation. , 2014, Blood.

[7]  J. Meseguer,et al.  Tnfa Signaling Through Tnfr2 Protects Skin Against Oxidative Stress–Induced Inflammation , 2014, PLoS biology.

[8]  Ryan M. O’Connell,et al.  Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. , 2014, Cell stem cell.

[9]  Arndt F. Siekmann,et al.  Distinct Notch signaling outputs pattern the developing arterial system , 2014, Development.

[10]  J. Coll,et al.  In addition to its antiviral and immunomodulatory properties, the zebrafish β-defensin 2 (zfBD2) is a potent viral DNA vaccine molecular adjuvant. , 2014, Antiviral research.

[11]  Amit Kumar,et al.  TNF and TNF Receptor Superfamily Members in HIV infection: New Cellular Targets for Therapy? , 2013, Mediators of inflammation.

[12]  A. Bigas,et al.  Notch and Wnt signaling in the emergence of hematopoietic stem cells. , 2013, Blood cells, molecules & diseases.

[13]  A. Baldwin,et al.  Deletion of the NF-κB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. , 2013, Blood.

[14]  D. Traver,et al.  Signalling pathways that control vertebrate haematopoietic stem cell specification , 2013, Nature Reviews Immunology.

[15]  Thomas A. Wynn,et al.  Macrophage biology in development, homeostasis and disease , 2013, Nature.

[16]  I. Shapiro,et al.  Inflammatory Cytokines Induce NOTCH Signaling in Nucleus Pulposus Cells , 2013, The Journal of Biological Chemistry.

[17]  M. Bronze,et al.  Clinical use of anti-TNF therapy and increased risk of infections , 2013, Drug, healthcare and patient safety.

[18]  A. Meijer,et al.  Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system , 2013, Disease Models & Mechanisms.

[19]  Xiaonan Dong,et al.  Autophagy and Viruses: Adversaries or Allies? , 2013, Journal of Innate Immunity.

[20]  S. Wirtz,et al.  Autophagy regulates TNFα-mediated joint destruction in experimental arthritis , 2012, Annals of the rheumatic diseases.

[21]  J. Meseguer,et al.  TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3 , 2012, Disease Models & Mechanisms.

[22]  L. Espinosa,et al.  Hematopoietic stem cells: to be or Notch to be. , 2012, Blood.

[23]  John M. Ashton,et al.  Noncanonical NF‐κB Signaling Regulates Hematopoietic Stem Cell Self‐Renewal and Microenvironment Interactions , 2012, Stem cells.

[24]  M. Manz,et al.  Demand-adapted regulation of early hematopoiesis in infection and inflammation. , 2012, Blood.

[25]  S. Gerondakis,et al.  NF‐κB subunit specificity in hemopoiesis , 2012, Immunological reviews.

[26]  B. Aggarwal,et al.  Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. , 2012, Blood.

[27]  G. Wiens,et al.  Origin and evolution of TNF and TNF receptor superfamilies. , 2011, Developmental and comparative immunology.

[28]  L. Xing,et al.  Non-Canonical NF-Kb Signaling Regulates Hematopoietic Stem Cell Self-Renewal and Microenvironment Interactions , 2011 .

[29]  James Harris,et al.  Autophagy and cytokines. , 2011, Cytokine.

[30]  E. Ling,et al.  Nuclear factor-kappa β regulates Notch signaling in production of proinflammatory cytokines and nitric oxide in murine BV-2 microglial cells , 2011, Neuroscience.

[31]  M. Goodell,et al.  Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response , 2011, Nature Reviews Immunology.

[32]  J. Epstein,et al.  Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptor sFlt1. , 2011, Developmental cell.

[33]  C. Jobin,et al.  Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract. , 2011, Gastroenterology.

[34]  J. Meseguer,et al.  Evolutionary conserved pro-inflammatory and antigen presentation functions of zebrafish IFNγ revealed by transcriptomic and functional analysis. , 2011, Molecular immunology.

[35]  M. Goll,et al.  Transgenerational analysis of transcriptional silencing in zebrafish. , 2011, Developmental biology.

[36]  E. Gomez-Casado,et al.  A comparative review on European-farmed finfish RNA viruses and their vaccines. , 2011, Vaccine.

[37]  M. Goodell,et al.  Inflammatory signals regulate hematopoietic stem cells. , 2011, Trends in immunology.

[38]  A. Andrianopoulos,et al.  mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. , 2011, Blood.

[39]  Zilong Wen,et al.  Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. , 2011, Blood.

[40]  A. Statnikov,et al.  The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. , 2010, Cancer cell.

[41]  K. Kawakami,et al.  Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions , 2010, Development.

[42]  L. Espinosa,et al.  The Notch pathway in the developing hematopoietic system. , 2010, The International journal of developmental biology.

[43]  Miriam Davis,et al.  TNF receptor 2 pathway: drug target for autoimmune diseases , 2010, Nature Reviews Drug Discovery.

[44]  J. Meseguer,et al.  Zebrafish larvae are unable to mount a protective antiviral response against waterborne infection by spring viremia of carp virus. , 2010, Developmental and comparative immunology.

[45]  D. Traver,et al.  Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. , 2010, Blood.

[46]  David M. Tobin,et al.  The lta4h Locus Modulates Susceptibility to Mycobacterial Infection in Zebrafish and Humans , 2010, Cell.

[47]  K. Kissa,et al.  Blood stem cells emerge from aortic endothelium by a novel type of cell transition , 2010, Nature.

[48]  N. Galjart,et al.  In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium , 2010, Nature.

[49]  Lionel B Ivashkiv,et al.  Type I interferon: a new player in TNF signaling. , 2010, Current directions in autoimmunity.

[50]  N. Eissa,et al.  Autophagy in innate and adaptive immunity. , 2010, Proceedings of the American Thoracic Society.

[51]  D. Stainier,et al.  Hematopoietic stem cells derive directly from aortic endothelium during development , 2009, Nature.

[52]  Arndt F. Siekmann,et al.  Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas , 2009, Mechanisms of Development.

[53]  D. Klionsky,et al.  Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos , 2009, Autophagy.

[54]  S. Cherry,et al.  Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. , 2009, Immunity.

[55]  Raphael Kopan,et al.  The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism , 2009, Cell.

[56]  D. Johnston,et al.  TNF induction of jagged-1 in endothelial cells is NFkappaB-dependent. , 2009, Gene.

[57]  J. Cinatl,et al.  The impact of treatment with tumour necrosis factor‐α antagonists on the course of chronic viral infections: a review of the literature , 2008, The British journal of dermatology.

[58]  U. Lendahl,et al.  Notch-1 associates with IKKα and regulates IKK activity in cervical cancer cells , 2008, Oncogene.

[59]  J. Meseguer,et al.  Evolution of the Inflammatory Response in Vertebrates: Fish TNF-α Is a Powerful Activator of Endothelial Cells but Hardly Activates Phagocytes1 , 2008, The Journal of Immunology.

[60]  Ulrich Siebenlist,et al.  The roles of the classical and alternative nuclear factor-kappaB pathways: potential implications for autoimmunity and rheumatoid arthritis , 2008, Arthritis research & therapy.

[61]  T. Enver,et al.  Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1 , 2008, The EMBO journal.

[62]  D. Traver,et al.  CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis , 2008, Development.

[63]  Christopher C W Hughes,et al.  TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. , 2008, Blood.

[64]  D. Scadden,et al.  Tumor necrosis factor-alpha and endothelial cells modulate Notch signaling in the bone marrow microenvironment during inflammation. , 2008, Experimental hematology.

[65]  John L Cleveland,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes , 2008, Autophagy.

[66]  T. Ueno,et al.  LC3 and Autophagy. , 2008, Methods in molecular biology.

[67]  K. Kissa,et al.  Origins and unconventional behavior of neutrophils in developing zebrafish. , 2008, Blood.

[68]  Melissa Hardy,et al.  The Tol2kit: A multisite gateway‐based construction kit for Tol2 transposon transgenesis constructs , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[69]  J. Reed,et al.  Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis , 2007, Nature Genetics.

[70]  V. Tergaonkar,et al.  Notch and NFκB signaling pathways: Do they collaborate in normal vertebrate brain development and function? , 2007 .

[71]  L. Zon,et al.  Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis , 2007, Nature.

[72]  Yun-Jin Jiang,et al.  Jagged2a-Notch Signaling Mediates Cell Fate Choice in the Zebrafish Pronephric Duct , 2007, PLoS genetics.

[73]  V. Tergaonkar,et al.  Notch and NFkappaB signaling pathways: Do they collaborate in normal vertebrate brain development and function? , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[74]  P. Ingham,et al.  A transgenic zebrafish model of neutrophilic inflammation. , 2006, Blood.

[75]  D. Agrawal,et al.  Insulin‐like growth factor‐1 and TNF‐α regulate autophagy through c‐jun N‐terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells , 2006, Immunology and cell biology.

[76]  S. Pizzo,et al.  LMP-420, a small-molecule inhibitor of TNF-alpha, reduces replication of HIV-1 and Mycobacterium tuberculosis in human cells , 2006, AIDS research and therapy.

[77]  G. McFadden,et al.  Modulation of Tumor Necrosis Factor by Microbial Pathogens , 2006, PLoS pathogens.

[78]  G. Sonenshein,et al.  Notch1 augments NF‐κB activity by facilitating its nuclear retention , 2006 .

[79]  C. Bauvy,et al.  NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. , 2006, The Journal of biological chemistry.

[80]  G. Sonenshein,et al.  Notch1 augments NF-kappaB activity by facilitating its nuclear retention. , 2006, The EMBO journal.

[81]  B. Paw,et al.  Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. , 2005, Blood.

[82]  B. Aggarwal,et al.  Transcription Factor NF‐κB: A Sensor for Smoke and Stress Signals , 2005 .

[83]  L. Zon,et al.  Hematopoietic stem cell fate is established by the Notch-Runx pathway. , 2005, Genes & development.

[84]  Heather Verkade,et al.  Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development , 2005, Development.

[85]  M. Gering,et al.  Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. , 2005, Developmental cell.

[86]  A. Look,et al.  Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. , 2005, Developmental cell.

[87]  B. Aggarwal,et al.  Transcription factor NF-kappaB: a sensor for smoke and stress signals. , 2005, Annals of the New York Academy of Sciences.

[88]  B. Hadland,et al.  A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. , 2004, Blood.

[89]  D. Vassilopoulos,et al.  Safety of antitumour necrosis factor (anti-TNF) therapy in patients with chronic viral infections: hepatitis C, hepatitis B, and HIV infection , 2004, Annals of the rheumatic diseases.

[90]  L. Zon,et al.  In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Eric C. Lai,et al.  Notch signaling: control of cell communication and cell fate , 2004, Development.

[92]  Leonard I Zon,et al.  Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants , 2003, Nature Immunology.

[93]  Irving L Weissman,et al.  Biology of hematopoietic stem cells and progenitors: implications for clinical application. , 2003, Annual review of immunology.

[94]  G. Daley,et al.  Hematopoiesis from embryonic stem cells: lessons from and for ontogeny. , 2003, Experimental hematology.

[95]  B. Aggarwal Signalling pathways of the TNF superfamily: a double-edged sword , 2003, Nature Reviews Immunology.

[96]  C. Benedict Viruses and the TNF-related cytokines, an evolving battle. , 2003, Cytokine & growth factor reviews.

[97]  Y. Abu-Amer,et al.  Dominant-negative IκB Facilitates Apoptosis of Osteoclasts by Tumor Necrosis Factor-α* , 2003, Journal of Biological Chemistry.

[98]  S. Ogawa,et al.  Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. , 2003, Immunity.

[99]  L. Espinosa,et al.  IκBα and p65 Regulate the Cytoplasmic Shuttling of Nuclear Corepressors: Cross-talk between Notch and NFκB Pathways , 2003 .

[100]  L. Espinosa,et al.  IkappaBalpha and p65 regulate the cytoplasmic shuttling of nuclear corepressors: cross-talk between Notch and NFkappaB pathways. , 2003, Molecular biology of the cell.

[101]  Y. Abu-Amer,et al.  Dominant-negative IkappaB facilitates apoptosis of osteoclasts by tumor necrosis factor-alpha. , 2003, Journal of Biological Chemistry.

[102]  G. Kurath,et al.  Spring viremia of carp (SVC). , 2002, Diseases of aquatic organisms.

[103]  J. Encinar,et al.  Salmonid viral haemorrhagic septicaemia virus: fusion-related enhancement of virus infectivity by peptides derived from viral glycoprotein G or a combinatorial library. , 2002, The Journal of general virology.

[104]  A. Cumano,et al.  The hare and the tortoise: an embryonic haematopoietic race , 2002, Nature Reviews Immunology.

[105]  J. Hiscott,et al.  The interferon antiviral response: from viral invasion to evasion , 2002, Current opinion in infectious diseases.

[106]  M. Lardelli,et al.  Evolutionary analysis of vertebrate Notch genes , 2001, Development Genes and Evolution.

[107]  J. Encinar,et al.  A Protein G Fragment from the Salmonid Viral Hemorrhagic Septicemia Rhabdovirus Induces Cell-to-Cell Fusion and Membrane Phosphatidylserine Translocation at Low pH* , 2001, The Journal of Biological Chemistry.

[108]  L. S. Ross,et al.  Apoptosis in the developing zebrafish embryo. , 2001, Developmental biology.

[109]  B. Thisse,et al.  Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. , 2001, Developmental biology.

[110]  J. Campos-Ortega,et al.  Notch signaling is required for arterial-venous differentiation during embryonic vascular development. , 2001, Development.

[111]  N. Speck,et al.  Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo , 2000, The EMBO journal.

[112]  W. O'brien,et al.  Tumor necrosis factor (TNF)-alpha and TNF receptors in viral pathogenesis. , 2000, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[113]  B. Thisse,et al.  Ontogeny and behaviour of early macrophages in the zebrafish embryo. , 1999, Development.

[114]  J. Campos-Ortega,et al.  Use of the Gal4-UAS technique for targeted gene expression in the zebrafish , 1999, Mechanisms of Development.

[115]  K. Fish,et al.  Interferon-gamma and tumor necrosis factor-alpha specifically induce formation of cytomegalovirus-permissive monocyte-derived macrophages that are refractory to the antiviral activity of these cytokines. , 1997, The Journal of clinical investigation.

[116]  J. Peschon,et al.  Antiviral Activity of Tumor Necrosis Factor (TNF) Is Mediated via p55 and p75 TNF Receptors , 1997, The Journal of experimental medicine.

[117]  A. Estepa,et al.  Temperature and pH requirements for viral haemorrhagic septicemia virus induced cell fusion , 1997 .

[118]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .

[119]  Kohchi Chie,et al.  Constitutive expression of tnf-α and -β genes in mouse embryo: roles of cytokines as regulator and effector on development , 1994 .

[120]  G. Soma,et al.  Constitutive expression of TNF-alpha and -beta genes in mouse embryo: roles of cytokines as regulator and effector on development. , 1994, The International journal of biochemistry.

[121]  J. Postlethwait,et al.  Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. , 1993, Development.

[122]  R. Ruigrok,et al.  Low-pH conformational changes of rabies virus glycoprotein and their role in membrane fusion , 1993, Journal of virology.

[123]  G. Firestein,et al.  Cytokines in chronic inflammatory arthritis. V. Mutual antagonism between interferon-gamma and tumor necrosis factor-alpha on HLA-DR expression, proliferation, collagenase production, and granulocyte macrophage colony-stimulating factor production by rheumatoid arthritis synoviocytes. , 1990, The Journal of clinical investigation.

[124]  H. Loetscher,et al.  Binding and regulation of cellular functions by monoclonal antibodies against human tumor necrosis factor receptors , 1990, The Journal of experimental medicine.