Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis

Abstract The design and development of efficient TiO 2 -based, hybrid, nanostructured photocatalysts has recently been receiving substantial attention for environmental remediation due to their excellent physiochemical properties. This article provides an overview of the synthesis strategies and characteristics of the next-generation TiO 2 -based hybrid photocatalysts, produced in combination with polymers (e.g., polyaniline, polypyrrole, polythiophene) and carbon nanomaterials (e.g., graphene, GO, CNT, carbon quantum dots, carbon nitride). The structural aspects, nanostructure formation process, parameters affecting catalytic activity, photocatalytic mechanisms and photocatalytic applications of TiO 2 -based catalysts for efficient photocatalytic degradation of gaseous/volatile organic pollutants in water/air are reviewed. Further, current research trends, means to increase catalytic performance and future prospects of high-performance TiO 2 -based hybrid photocatalytic materials, are briefly summarized.

[1]  A. Ansón-Casaos,et al.  Combined modification of a TiO2 photocatalyst with two different carbon forms , 2013 .

[2]  Huijun Zhao,et al.  Synthesis and characterization of N-doped carbonaceous/TiO2 composite photoanodes for visible-light photoelectrocatalytic inactivation of Escherichia coli K-12 , 2014 .

[3]  A. Fujishima,et al.  Facile synthesis of transparent superhydrophobic titania coating by using soot as a nanoimprint template , 2013 .

[4]  Kakarla Raghava Reddy,et al.  Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: Effect of dopant on the properties , 2008 .

[5]  A. Fujishima,et al.  Preparation and photocatalytic activity of robust titania monoliths for water remediation. , 2013, ACS applied materials & interfaces.

[6]  Gang Wang,et al.  Progress on extending the light absorption spectra of photocatalysts. , 2014, Physical chemistry chemical physics : PCCP.

[7]  S. Obregón,et al.  Excellent photocatalytic activity of Yb3+, Er3+ co-doped BiVO4 photocatalyst , 2014 .

[8]  A. Fujishima,et al.  Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2 nanofiber composites. , 2011, Journal of nanoscience and nanotechnology.

[9]  A. Fujishima,et al.  Nanofibrous TiO2-core/conjugated polymer-sheath composites: synthesis, structural properties and photocatalytic activity. , 2010, Journal of nanoscience and nanotechnology.

[10]  K. Lv,et al.  Hydrogen peroxide assisted rapid synthesis of TiO2 hollow microspheres with enhanced photocatalytic activity , 2014 .

[11]  Yueming Li,et al.  P25-graphene composite as a high performance photocatalyst. , 2010, ACS nano.

[12]  Yuehe Lin,et al.  A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties , 2014 .

[13]  C. Xie,et al.  A peculiar mechanism for the photocatalytic reduction of decabromodiphenyl ether over reduced graphene oxide-TiO2 photocatalyst , 2014 .

[14]  Huimin Zhao,et al.  Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres , 2011 .

[15]  Zhihui Dai,et al.  Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential. , 2014, Biosensors & bioelectronics.

[16]  Juan-Yu Yang,et al.  Phase-reversal emulsion catalysis with CNT-TiO2 nanohybrids for the selective oxidation of benzyl alcohol. , 2013, Chemistry.

[17]  Xiaoyang Zhu,et al.  Hot electron injection from graphene quantum dots to TiO₂. , 2013, ACS nano.

[18]  F. Gutiérrez-Martín,et al.  Enhanced photocatalytic activity of TiO2 thin films on plasma-pretreated organic polymers , 2014 .

[19]  M. Gao,et al.  Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning , 2014 .

[20]  S. Batool,et al.  The enhancement in photocatalytic activity of bismuth modified silica and bismuth silicate nanofibers , 2014 .

[21]  Yunfeng Zhu,et al.  Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites , 2010 .

[22]  X. Bai,et al.  Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application , 2014 .

[23]  Zisheng Zhang,et al.  Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance , 2013 .

[24]  X. Verykios,et al.  Kinetic and mechanistic study of the photocatalytic reforming of methanol over Pt/TiO2 catalyst , 2014 .

[25]  Darren Delai Sun,et al.  Self‐Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two‐Phase Interface and Their Anti‐Recombination in Photocatalytic Applications , 2010 .

[26]  H. Fu,et al.  Exceptional Photocatalytic Activity of 001-Facet-Exposed TiO2 Mainly Depending on Enhanced Adsorbed Oxygen by Residual Hydrogen Fluoride , 2013 .

[27]  Jiajun Li,et al.  In situ synthesis of ultrathin 2-D TiO2 with high energy facets on graphene oxide for enhancing photocatalytic activity , 2014 .

[28]  C. Miranda,et al.  Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method , 2013 .

[29]  Zhaoyang Liu,et al.  Multifunctional graphene oxide–TiO2 microsphere hierarchical membrane for clean water production , 2013 .

[30]  Jae Joon Kim,et al.  Controlled fabrication of porous double-walled TiO2 nanotubes via ultraviolet-assisted anodization. , 2014, Nanoscale.

[31]  Myung-Hwan Whangbo,et al.  Density Functional Characterization of the Visible-Light Absorption in Substitutional C-Anion- and C-Cation-Doped TiO2 , 2009 .

[32]  Jin Zhai,et al.  Hierarchically ordered macro-mesoporous TiO₂-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. , 2011, ACS nano.

[33]  M. Kormunda,et al.  TiO2-graphene oxide nanocomposite as advanced photocatalytic materials , 2013, Chemistry Central Journal.

[34]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[35]  K. R. Reddy,et al.  Synthesis of MWCNTs‐core/thiophene polymer‐sheath composite nanocables by a cationic surfactant‐assisted chemical oxidative polymerization and their structural properties , 2010 .

[36]  M. Montazer,et al.  Fe3+:Ag/TiO2 nanocomposite: Synthesis, characterization and photocatalytic activity under UV and visible light irradiation , 2014 .

[37]  G. Ho,et al.  Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H2 evolution , 2014 .

[38]  Jincai Zhao,et al.  Conjugation-grafted-TiO(2) nanohybrid for high photocatalytic efficiency under visible light. , 2014, ACS applied materials & interfaces.

[39]  Z. Xiong,et al.  The effect of perspiration on photo-induced chemical reaction of azo dyes and the determination of aromatic amine products , 2012 .

[40]  N. Zhang,et al.  Synthesis of fullerene-, carbon nanotube-, and graphene-TiO₂ nanocomposite photocatalysts for selective oxidation: a comparative study. , 2013, ACS applied materials & interfaces.

[41]  Seung Jae Yang,et al.  Simple fabrication of carbon/TiO2 composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B , 2012, Nanotechnology.

[42]  A. Alves,et al.  Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites , 2013 .

[43]  Jeong Hoon Byeon,et al.  Gas-phase self-assembly of highly ordered titania@graphene nanoflakes for enhancement in photocatalytic activity. , 2013, ACS applied materials & interfaces.

[44]  Huijun Zhao,et al.  Synthesis of carbon nanotube-anatase TiO₂ sub-micrometer-sized sphere composite photocatalyst for synergistic degradation of gaseous styrene. , 2012, ACS applied materials & interfaces.

[45]  Xiaomei Yu,et al.  Highly Enhanced Photoactivity of Anatase TiO2 Nanocrystals by Controlled Hydrogenation-Induced Surface Defects , 2013 .

[46]  S. Phanichphant,et al.  Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. , 2014, Journal of colloid and interface science.

[47]  A. Zaleska,et al.  The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2 , 2014 .

[48]  Zhong‐Lin Wang,et al.  Direct Growth of TiO2 Nanosheet Arrays on Carbon Fibers for Highly Efficient Photocatalytic Degradation of Methyl Orange , 2012, Advanced materials.

[49]  M. Fernández-García,et al.  Composite Bi2O3–TiO2 catalysts for toluene photo-degradation: Ultraviolet and visible light performances , 2014 .

[50]  N. Dimitrijević,et al.  Nanostructured TiO2/Polypyrrole for Visible Light Photocatalysis , 2013 .

[51]  Yunqi Liu,et al.  One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. , 2013, ACS applied materials & interfaces.

[52]  Xubiao Luo,et al.  Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation , 2012 .

[53]  Ying Dai,et al.  Relative photooxidation and photoreduction activities of the {100}, {101}, and {001} surfaces of anatase TiO2. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[54]  K. Y. Koltunov,et al.  Catalytic epoxidation of propylene with CO/O2 over Au/TiO2 , 2014 .

[55]  Huilong Wang,et al.  Synthesis and photocatalytic activity of poly-o-phenylenediamine (PoPD)/TiO2 composite under VIS-light irradiation , 2012 .

[56]  Rujia Zou,et al.  A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications. , 2011, Chemistry.

[57]  E. Longo,et al.  Soft-chemical synthesis, characterization and humidity sensing behavior of WO3/TiO2 nanopowders , 2014 .

[58]  Z. Tian,et al.  Photocatalytic activity of hyperbranched polyester/TiO2 nanocomposites , 2014 .

[59]  R. Xiong,et al.  Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination. , 2013, ACS applied materials & interfaces.

[60]  L. Echegoyen,et al.  The electrochemical properties of nanocomposite films obtained by chemical in situ polymerization of aniline and carbon nanostructures. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[61]  Xuhui Sun,et al.  Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency , 2014 .

[62]  Qiaoling Li,et al.  Synthesis and characterization of polypyrrole/TiO2 composite by in situ polymerization method , 2010 .

[63]  Chi Zhang,et al.  Visible light photocatalytic activity of aromatic polyamide dendrimer/TiO2 composites functionalized with spirolactam-based molecular switch. , 2013, Journal of colloid and interface science.

[64]  Qiao-ling Li,et al.  Photocatalytic and microwave absorbing properties of polypyrrole/Fe-doped TiO2 composite by in situ polymerization method , 2011 .

[65]  Kwang-Pil Lee,et al.  Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties. , 2008, Journal of nanoscience and nanotechnology.

[66]  S. Sabharwal,et al.  Decoloration and degradation of Reactive Red-120 dye by electron beam irradiation in aqueous solution. , 2011, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[67]  Sanjaya D. Perera,et al.  Hydrothermal synthesis of graphene-TiO 2 nanotube composites with enhanced photocatalytic activity , 2012 .

[68]  Meicheng Li,et al.  A novel 3D structure composed of strings of hierarchical TiO2 spheres formed on TiO2 nanobelts with high photocatalytic properties , 2014 .

[69]  Yingchun Yu,et al.  Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites , 2014 .

[70]  Pu Wang,et al.  Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism , 2014 .

[71]  Xijiang Han,et al.  Graphitic-C(3)N(4)-hybridized TiO(2) nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity. , 2014, Journal of hazardous materials.

[72]  Cong Ma,et al.  Au/montmorillonite/polyaniline nanoflakes: facile fabrication by self-assembly and application as catalyst , 2014 .

[73]  T. Jardiel,et al.  Influence of nickel in the hydrogen production activity of TiO2 , 2014 .

[74]  A. W. Maijenburg,et al.  Electrochemical synthesis of coaxial TiO2–Ag nanowires and their application in photocatalytic water splitting , 2014 .

[75]  Dong Liu,et al.  In situ synthesis of bimetallic Ag/Pt loaded single-crystalline anatase TiO2 hollow nano-hemispheres and their improved photocatalytic properties , 2014 .

[76]  Xinyong Li,et al.  Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays , 2011 .

[77]  Yukihiro Ozaki,et al.  Consistent changes in electronic states and photocatalytic activities of metal (Au, Pd, Pt)-modified TiO2 studied by far-ultraviolet spectroscopy. , 2014, Chemical communications.

[78]  P. Ajayan,et al.  In situ synthesis of thermochemically reduced graphene oxide conducting nanocomposites. , 2012, Nano letters.

[79]  Mahbub Hassan,et al.  Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis , 2014 .

[80]  E. Gaigneaux,et al.  Elaboration and characterization of sulfated and unsulfated V2O5/TiO2 nanotubes catalysts for chlorobenzene total oxidation , 2014 .

[81]  Baoxia Mi,et al.  Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance , 2014 .

[82]  C. Xie,et al.  Enhanced Photocatalytic Activity of Chemically Bonded TiO2/Graphene Composites Based on the Effective Interfacial Charge Transfer through the C–Ti Bond , 2013 .

[83]  Jun Li,et al.  Upconversion-P25-graphene composite as an advanced sunlight driven photocatalytic hybrid material , 2012 .

[84]  T. Tachikawa,et al.  Visible light photocatalytic activities of nitrogen and platinum-doped TiO2: Synergistic effects of co-dopants , 2014 .

[85]  Jin Suk Chung,et al.  Photocatalytic performance of Sn-doped TiO2/reduced graphene oxide composite materials , 2014 .

[86]  Hua Tang,et al.  Template-free synthesis of uniform TiO2 mesoporous microspheres with enhanced photocatalytic activity , 2014 .

[87]  A. Sanson,et al.  Low irradiance photocatalytic degradation of toluene in air by screen-printed titanium dioxide layers , 2013 .

[88]  Minghong Wu,et al.  Electrophoretic fabrication of highly robust, efficient, and benign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2 nanotube arrays , 2013 .

[89]  Young Kwang Kim,et al.  Core–shell-structured carbon nanofiber-titanate nanotubes with enhanced photocatalytic activity , 2014 .

[90]  G. Madras,et al.  Photocatalytic activity of Ag-substituted and impregnated nano-TiO2 , 2009 .

[91]  Jie Huang,et al.  Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method , 2014 .

[92]  Yujin Chen,et al.  A novel 3D structured reduced graphene oxide/TiO2 composite: synthesis and photocatalytic performance , 2014 .

[93]  W. Chu,et al.  Retracted Article: Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries , 2014 .

[94]  Mingqing Chen,et al.  Enhanced visible light photocatalytic activity of Bi2WO6 via modification with polypyrrole , 2013 .

[95]  O. Stroyuk,et al.  Influence of colloidal graphene oxide on photocatalytic activity of nanocrystalline TiO2 in gas-phase ethanol and benzene oxidation , 2014 .

[96]  Baibiao Huang,et al.  Study of the Nitrogen Concentration Influence on N-Doped TiO2Anatase from First-Principles Calculations , 2007 .

[97]  A. L. Ortiz,et al.  Synthesis and photocatalytic activity of Eu3+-doped nanoparticulate TiO2 sols and thermal stability of the resulting xerogels , 2014 .

[98]  Yuanchang Shi,et al.  Preparation and characterization of polypyrrole/TiO2 nanocomposites by reverse microemulsion polymerization and its photocatalytic activity for the degradation of methyl orange under natural light , 2013 .

[99]  P. Liu,et al.  Preparation of PANI–TiO2 nanocomposites and their solid-phase photocatalytic degradation , 2006 .

[100]  Jing An,et al.  Photocatalytic activity of polypyrrole/TiO2 nanocomposites under visible and UV light , 2011 .

[101]  Lauren R. Grabstanowicz,et al.  Ti3+ self-doped TiO2−x anatase nanoparticles via oxidation of TiH2 in H2O2 , 2014 .

[102]  Dianzeng Jia,et al.  A green and facile route for constructing flower-shaped TiO2 nanocrystals assembled on graphene oxide sheets for enhanced photocatalytic activity , 2013, Nanotechnology.

[103]  Huaiyong Zhu,et al.  TiO2 nanofibers of different crystal phases for transesterification of alcohols with dimethyl carbonate , 2014 .

[104]  L. Devi,et al.  Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: A new insight into the bulk and surface modification , 2014 .

[105]  A. Gopalan,et al.  Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles , 2008 .

[106]  Xinchen Wang,et al.  Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis , 2014 .

[107]  T. Park,et al.  Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants , 2013 .

[108]  Hoeil Chung,et al.  Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties , 2009 .

[109]  Changhui Zhao,et al.  Preparation of carbon–TiO2 nanocomposites by a hydrothermal method and their enhanced photocatalytic activity , 2013 .

[110]  S. Takenaka,et al.  Coverage of carbon nanotubes with titania nanoparticles for the preparation of active titania-based photocatalysts , 2012 .

[111]  Z. Lai,et al.  Enhanced visible-light activity of titania via confinement inside carbon nanotubes. , 2011, Journal of the American Chemical Society.

[112]  Hao Zhang,et al.  Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxide via Hybridization with Monolayer Polyaniline , 2009 .

[113]  Y. Cong,et al.  Anchoring a uniform TiO2 layer on graphene oxide sheets as an efficient visible light photocatalyst , 2013 .

[114]  D. Bahnemann,et al.  Self-cleaning properties, mechanical stability, and adhesion strength of transparent photocatalytic TiO(2)-ZnO coatings on polycarbonate. , 2014, ACS applied materials & interfaces.

[115]  Michel B. Johnson,et al.  Novel synthesis of rutile titanium dioxide-polypyrrole nano composites and their application in hydrogen generation , 2014 .

[116]  A. Dombi,et al.  Substrate dependent photocatalytic performance of TiO2/MWCNT photocatalysts , 2014 .

[117]  Xiaodong Wang,et al.  Preparation of g-C 3 N 4 /TiO 2 Nanocomposites and Investigation of Their Photocatalytic Activity , 2013 .

[118]  Yueping Fang,et al.  A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties , 2012 .

[119]  Ling Zhang,et al.  Elimination of BPA endocrine disruptor by magnetic BiOBr@SiO2@Fe3O4 photocatalyst , 2014 .

[120]  Yi Tan,et al.  Macroporous polypyrrole-TiO2 composites with improved photoactivity and electrochemical sensitivity. , 2013, Journal of colloid and interface science.

[121]  Chan Beum Park,et al.  Highly Photoactive, Low Bandgap TiO2 Nanoparticles Wrapped by Graphene , 2012, Advanced materials.

[122]  Tierui Zhang,et al.  Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution , 2014 .

[123]  Xiaobo Chen,et al.  Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities , 2014 .

[124]  Di Zhang,et al.  Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution , 2014 .

[125]  He Yan,et al.  Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. , 2014, Journal of the American Chemical Society.

[126]  Jincheng Liu,et al.  Gram-scale production of graphene oxide–TiO2 nanorod composites: Towards high-activity photocatalytic materials , 2011 .

[127]  J. Zhai,et al.  Novel polypyrrole-sensitized hollow TiO2/fly ash cenospheres: Synthesis, characterization, and photocatalytic ability under visible light , 2012 .

[128]  M. M. Sundaram,et al.  Facile synthesis of novel hierarchical TiO2@Poly(o-phenylenediamine) core–shell structures with enhanced photocatalytic performance under solar light , 2013 .

[129]  Shaozheng Hu,et al.  The Property and Photocatalytic Performance Comparison of Graphene, Carbon Nanotube, and C 60 Modified TiO 2 Nanocomposite Photocatalysts , 2013 .

[130]  U. Chaudhary,et al.  Photocatalytic activity of spark plasma sintered TiO2–graphene nanoplatelet composite , 2013 .

[131]  Jin-Kyu Kang,et al.  Graphene oxide embedded into TiO2 nanofiber: Effective hybrid photocatalyst for solar conversion , 2014 .

[132]  P. Smirniotis,et al.  Flame Aerosol Synthesized Cr Incorporated TiO2 for Visible Light Photodegradation of Gas Phase Acetonitrile , 2014 .

[133]  Kesong Yang,et al.  Density Functional Characterization of the Band Edges, the Band Gap States, and the Preferred Doping Sites of Halogen-Doped TiO2 , 2008 .

[134]  J. Figueiredo,et al.  Photocatalytic behaviour of nanocarbon–TiO2 composites and immobilization into hollow fibres , 2013 .

[135]  Luhua Lu,et al.  Graphene oxide capturing surface-fluorinated TiO2 nanosheets for advanced photocatalysis and the reveal of synergism reinforce mechanism. , 2014, Dalton transactions.

[136]  A. Barbier,et al.  Single Crystalline Hematite Films for Solar Water Splitting: Ti-Doping and Thickness Effects , 2014 .

[137]  Ying Dai,et al.  Insights into the Role of Surface Distortion in Promoting the Separation and Transfer of Photogenerated Carriers in Anatase TiO2 , 2013 .

[138]  Shaohua Shen,et al.  In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production , 2014 .

[139]  Kwang Su Kim,et al.  Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. , 2013, Nanoscale.

[140]  W. Jo,et al.  (Ratios: 5, 10, 50, 100, and 200) Polyaniline–TiO2 composites under visible- or UV-light irradiation for decomposition of organic vapors , 2013 .

[141]  Bingbing Liu,et al.  Pressure-induced phase transitions of TiO2 nanosheets with high reactive {001} facets , 2014 .

[142]  Wei‐Qing Huang,et al.  The enhanced photocatalytic activity of Ti3+ self-doped TiO2 by a reduction method , 2014 .

[143]  Hongzheng Chen,et al.  Polyaniline nanowires on TiO2 nano/microfiber hierarchical nano/microstructures: Preparation and their photocatalytic properties , 2011 .

[144]  Liejin Guo,et al.  Heterojunctions in g-C3N4/TiO2(B) nanofibres with exposed (001) plane and enhanced visible-light photoactivity , 2014 .

[145]  Y. Duan,et al.  Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light. , 2009, Journal of hazardous materials.

[146]  A. S. Nair,et al.  One-pot hydrothermal synthesis of TiO2/graphene nanocomposites for enhanced visible light photocatalysis and photovoltaics , 2013 .

[147]  A. Gopalan,et al.  Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfonic acid) composites: Synthesis and characterization , 2007 .

[148]  Ying Dai,et al.  A Ti3+:TiO2/TiF3 hybrid with enhanced visible-light photocatalytic reactivity , 2014 .

[149]  Xiong Yin,et al.  Simultaneous N-doping of reduced graphene oxide and TiO2 in the composite for visible light photodegradation of methylene blue with enhanced performance , 2013 .

[150]  S. Ibrahim,et al.  Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance , 2014 .

[151]  Y. Wan,et al.  Synergy effect in photodegradation of contaminants from water using ordered mesoporous carbon-based titania catalyst , 2014 .

[152]  A. Mohamed,et al.  Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. , 2014, Nanoscale.

[153]  Xiaoyu Wang,et al.  A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts , 2012 .

[154]  T. Andreu,et al.  Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction , 2014 .

[155]  Shaikh Nayeem Faisal,et al.  Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode , 2014 .

[156]  D. Suh,et al.  Transition metal-doped TiO2 nanowire catalysts for the oxidative coupling of methane , 2014 .

[157]  Xijiang Han,et al.  One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. , 2013, ACS applied materials & interfaces.

[158]  Jinlong Yang,et al.  Active hydrogen species on TiO2 for photocatalytic H2 production. , 2014, Physical chemistry chemical physics : PCCP.

[159]  Shujuan Zhang,et al.  Super-high activity of Bi3+ doped Ag3PO4 and enhanced photocatalytic mechanism , 2014 .

[160]  Z. Šaponjić,et al.  Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles , 2013 .

[161]  Akira Fujishima,et al.  Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification , 2012 .

[162]  Petr Vomáčka,et al.  Doping of TiO2–GO and TiO2–rGO with Noble Metals: Synthesis, Characterization and Photocatalytic Performance for Azo Dye Discoloration , 2013, Photochemistry and photobiology.

[163]  Xinliang Feng,et al.  Graphene encapsulated hollow TiO2 nanospheres: efficient synthesis and enhanced photocatalytic activity , 2013 .

[164]  C. Liang,et al.  Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation , 2014 .

[165]  Feifei Liu,et al.  Cinder supported K2CO3 as catalyst for biodiesel production , 2011 .

[166]  Changyuan Hu,et al.  TiO2-graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst. , 2013, Physical chemistry chemical physics : PCCP.

[167]  Yichun Liu,et al.  Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis , 2014 .

[168]  Yi Tan,et al.  Preparation of porous PPyTiO2 composites: Improved visible light photoactivity and the mechanism , 2014 .

[169]  Yunchun Zhou,et al.  Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. , 2012, Nanoscale.

[170]  F. Gu,et al.  Recyclable graphene oxide-supported titanium dioxide photocatalysts with tunable properties. , 2014, ACS applied materials & interfaces.

[171]  Lei Zhu,et al.  Preparation of ZnS-Graphene/TiO2 Composites Designed for Their High Photonic Effect and Photocatalytic Activity Under Visible Light , 2014 .

[172]  Hong He,et al.  Photocatalytic oxidation of gaseous ammonia over fluorinated TiO2 with exposed (001) facets , 2014 .

[173]  L. Yin,et al.  Enhancement of photocatalytic activity for electrospun C@Ti/anatase fibers by lattice distortion under anisotropic stress , 2014 .

[174]  Lixia Zhao,et al.  Two-dimensional interface engineering of a titania-graphene nanosheet composite for improved photocatalytic activity. , 2013, ACS applied materials & interfaces.

[175]  Yunfeng Zhu,et al.  Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange , 2010 .

[176]  Haigang Yang,et al.  The influence of the oxidation degree of poly(3-hexylthiophene) on the photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites , 2012 .

[177]  H. Abdizadeh,et al.  Hierarchical sol–gel derived porous titania/carbon nanotube films prepared by controlled phase separation , 2014 .

[178]  Xubiao Luo,et al.  Visible-light photocatalytic degradation performances and thermal stability due to the synergetic effect of TiO2 with conductive copolymers of polyaniline and polypyrrole. , 2013, Nanoscale.

[179]  E. Favvas,et al.  Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT composites , 2014 .

[180]  R. Xiong,et al.  Synthesis and photocatalytic activity of polyaniline–TiO2 composites with bionic nanopapilla structure , 2011 .