Abelian Group Codes for Channel Coding and Source Coding

In this paper, we study the asymptotic performance of Abelian group codes for the channel coding problem for arbitrary discrete (finite alphabet) memoryless channels as well as the lossy source coding problem for arbitrary discrete (finite alphabet) memoryless sources. For the channel coding problem, we find the capacity characterized in a single-letter information-theoretic form. This simplifies to the symmetric capacity of the channel when the underlying group is a field. For the source coding problem, we derive the achievable rate-distortion function that is characterized in a single-letter information-theoretic form. When the underlying group is a field, it simplifies to the symmetric rate-distortion function. We give several illustrative examples. Due to the nonsymmetric nature of the sources and channels considered, our analysis uses a synergy of information-theoretic and group-theoretic tools.

[1]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[2]  R. Ahlswede Group Codes do not Achieve Shannon's Channel Capacity for General Discrete Channels , 1971 .

[3]  Aria Ghasemian Sahebi,et al.  Multilevel Channel Polarization for Arbitrary Discrete Memoryless Channels , 2013, IEEE Transactions on Information Theory.

[4]  S. Sandeep Pradhan,et al.  Distributed Source Coding Using Abelian Group Codes: A New Achievable Rate-Distortion Region , 2011, IEEE Transactions on Information Theory.

[5]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[6]  R. Dobrushin Asymptotic Optimality of Group and Systematic Codes for Some Channels , 1963 .

[7]  Rudolf Ahlswede,et al.  Bounds on Algebraic Code Capacities for Noisy Channels. II , 1971, Inf. Control..

[8]  János Körner,et al.  How to encode the modulo-two sum of binary sources (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[9]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[10]  Arun Padakandla,et al.  An Achievable Rate Region for the Three-User Interference Channel Based on Coset Codes , 2014, IEEE Transactions on Information Theory.

[11]  Stephan ten Brink,et al.  A close-to-capacity dirty paper coding scheme , 2004, ISIT.

[12]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[13]  Roberto Garello,et al.  Multilevel construction of block and trellis group codes , 1995, IEEE Trans. Inf. Theory.

[14]  R. L. Dobrushin,et al.  Asymptotic Estimates of the Probability of Error for Transmission of Messages over a Discrete Memoryless Communication Channel with a Symmetric Transition Probability Matrix , 1962 .

[15]  D. Slepian,et al.  A coding theorem for multiple access channels with correlated sources , 1973 .

[16]  T. J. Goblick,et al.  Coding for a discrete information source with a distortion measure , 1963 .

[17]  Alexander Barg,et al.  Polar codes for q-ary channels, q =2r , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[18]  Hans-Andrea Loeliger,et al.  Convolutional codes over groups , 1996, IEEE Trans. Inf. Theory.

[19]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[20]  Aaron D. Wyner,et al.  Recent results in the Shannon theory , 1974, IEEE Trans. Inf. Theory.

[21]  Hans-Andrea Loeliger,et al.  Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.

[22]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[23]  Emre Telatar,et al.  Polarization for arbitrary discrete memoryless channels , 2009, 2009 IEEE Information Theory Workshop.

[24]  Rudolf Ahlswede,et al.  Bounds on Algebraic Code Capacities for Noisy Channels. I , 1971, Inf. Control..

[25]  N. Bloch Abstract Algebra With Applications , 1987 .

[26]  KrithivasanD.,et al.  Distributed Source Coding Using Abelian Group Codes , 2011 .

[27]  Imre Csiszár Linear codes for sources and source networks: Error exponents, universal coding , 1982, IEEE Trans. Inf. Theory.

[28]  D. Slepian Group codes for the Gaussian channel , 1968 .

[29]  Arun Padakandla,et al.  A new achievable rate region for the 3-user discrete memoryless interference channel , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[30]  Arun Padakandla,et al.  Achievable rate region for three user discrete broadcast channel based on coset codes , 2012, 2013 IEEE International Symposium on Information Theory.

[31]  Giacomo Como,et al.  Group Codes Outperform Binary-Coset Codes on Nonbinary Symmetric Memoryless Channels , 2010, IEEE Transactions on Information Theory.

[32]  Arun Padakandla,et al.  A new coding theorem for three user discrete memoryless broadcast channel , 2012, ArXiv.

[33]  Ram Zamir,et al.  On the Loss of Single-Letter Characterization: The Dirty Multiple Access Channel , 2009, IEEE Transactions on Information Theory.

[34]  Aria Ghasemian Sahebi,et al.  Distributed source coding using Abelian group codes: Extracting performance from structure , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[35]  K. Ramchandran,et al.  Distributed source coding using syndromes (DISCUS): design and construction , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[36]  Aria Ghasemian Sahebi,et al.  Multilevel polarization of polar codes over arbitrary discrete memoryless channels , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[37]  D. M. Clark Theory of Groups , 2012 .

[38]  Alexander Barg,et al.  Polar Codes for $q$-Ary Channels, $q=2^{r}$ , 2013, IEEE Trans. Inf. Theory.

[39]  Giacomo Como,et al.  The Capacity of Finite Abelian Group Codes Over Symmetric Memoryless Channels , 2009, IEEE Transactions on Information Theory.

[40]  Toby Berger,et al.  Coding for noisy channels with input-dependent insertions , 1977, IEEE Trans. Inf. Theory.

[41]  Michael Gastpar,et al.  Computation Over Multiple-Access Channels , 2007, IEEE Transactions on Information Theory.

[42]  Sriram Vishwanath,et al.  Achievable Rates for $K$-User Gaussian Interference Channels , 2011, IEEE Transactions on Information Theory.

[43]  Mitchell D. Trott,et al.  The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.