Combining Fourier transform nuclear quadrupole resonance (FT-NQR) spectroscopy and mass spectrometry (MS) to study the electronic structure of titanocene dichlorides.

A combination of nuclear quadrupole resonance spectroscopy (NQR) and mass spectrometry (MS) has been used to observe trends in electronic structure in three titanocenes: bis(cyclopentadienyl) titanium dichloride (η(5)-C(5)H(5))(2)TiCl(2), bis(pentamethylcyclopentadienyl) titanium dichloride (η(5)-C(5)(CH(3))(5))(2)TiCl(2) and dimethylsilylene-bridged ansa bis(cyclopentadienyl) titanium dichloride Si(CH(3))(2)(η(5)-C(5)H(5))(2)TiCl(2). Using MS, electron ionisation mass spectra of these compounds are presented within the context of the entire homologous series with one to five methyl groups on each cyclopentadienyl ligand. A dedicated NQR spectrometer was constructed for this study with a sensitivity sufficient to precisely determine the NQR resonant frequency of (35)Cl atoms using 3 g samples of these titanocenes. The observed frequencies are thus 11.784, 11.930 and 10.863 MHz at 298 K. The results demonstrate that NQR using a relatively simple apparatus can be used as a sensitive and cost effective probe into the molecular structure of organometallic chlorides, which complements the information inferred from the mass spectra.

[1]  S. Ashbrook Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei. , 2009, Physical chemistry chemical physics : PCCP.

[2]  Shaohui Zheng,et al.  Solid-state chlorine NMR of group IV transition metal organometallic complexes. , 2009, Journal of the American Chemical Society.

[3]  L. O’Dell,et al.  Acquisition of ultra-wideline NMR spectra from quadrupolar nuclei by frequency stepped WURST–QCPMG , 2009 .

[4]  D. Canet,et al.  A fully homemade 14N quadrupole resonance spectrometer , 2008 .

[5]  M. Ostafin,et al.  14N-NQR based device for detection of explosives in landmines , 2007 .

[6]  W. Gallagher,et al.  Heteroaryl substituted ansa-titanocene anti-cancer drugs derived from fulvenes and titanium dichloride , 2005 .

[7]  M. Horáček,et al.  Linear Dimerization of Terminal Alkynes by Bis(tetramethylphenylcyclopentadienyl)titanium-Magnesium Hydride and Acetylide Complexes , 2003 .

[8]  I. Císařová,et al.  Synthesis and crystal structures of thermally stable titanocenes , 2002 .

[9]  P. Granger,et al.  NMR nomenclature. Nuclear spin properties and conventions for chemical shifts(IUPAC Recommendations 2001) , 2001 .

[10]  O. Poleshchuk,et al.  Distinctive features of the electronic structure of tetrachloride titanium complexes , 2000 .

[11]  I. Císařová,et al.  Photoinduced Generation of Catalytic Complexes from Substituted-Titanocene−Bis(trimethylsilyl)ethyne Complexes: Contribution to the Mechanism of the Catalytic Head-to-Tail Dimerization of Terminal Alkynes , 1999 .

[12]  O. Poleshchuk,et al.  The asymmetry parameter of the electric field gradient tensor of TiCl4 and its complexes studied by NQR nutation spectroscopy , 1997 .

[13]  O. Poleshchuk,et al.  Electron density redistribution on complexation in non-transition element complexes , 1993 .

[14]  Jörn P. Müller,et al.  Elektronenstoss-induzierter zerfall substituierter titanocendihalogenide , 1986 .

[15]  H. Köpf,et al.  Titanocene dichloride--the first metallocene with cancerostatic activity. , 1979, Angewandte Chemie.

[16]  A. Nesmeyanov,et al.  35Cl, 81Br and 127I NQR spectra of cyclopentadienyltitanium halides , 1974 .

[17]  Y. Nekrasov,et al.  Mass spectrometry of π-complexes of transition metals : II. Mono- and bis(cyclopentadienyl) derivatives of titanium , 1973 .

[18]  A. Nesmeyanov,et al.  Nuclear quadrupole resonance spectra of some cyclopentadienyltitanium chlorides , 1972 .

[19]  M. T. Rogers,et al.  Chlorine nuclear quadrupole resonance study of some molecular adducts of phosphorus oxychloride , 1968 .

[20]  G. Natta Stereospezifische Katalysen und isotaktische Polymere , 1956 .

[21]  Hans-Dieter Martin,et al.  Das Mülheimer Normaldruck‐Polyäthylen‐Verfahren , 1955 .