A polarimetric radar forward operator for model evaluation

Abstract A polarimetric radar forward operator has been developed as a tool for the systematic evaluation of microphysical parameterization schemes in high-resolution numerical weather prediction (NWP) models. The application of such a forward operator allows a direct comparison of the model simulations to polarimetric radar observations. While the comparison of observed and synthetic reflectivity gives information on the quality of quantitative precipitation forecasts, the information from the polarimetric quantities allows for a direct evaluation of the capacity of the NWP model to realistically describe the processes involved in the formation and interactions of the hydrometeors and, hence, the performance of the microphysical parameterization scheme. This information is expected to be valuable for detecting systematic model errors and hence improve model physics. This paper summarizes the technical characteristics of the synthetic polarimetric radar (SynPolRad). Different polarimetric radar quantities...

[1]  Jordan G. Powers,et al.  A Description of the Advanced Research WRF Version 2 , 2005 .

[2]  Karen Andsager,et al.  Laboratory Measurements of Axis Ratios for Large Raindrops , 1999 .

[3]  G. Doms,et al.  Operational quantitative precipitation forecasting at the German Weather Service , 2000 .

[4]  Brian A. Colle,et al.  The 13–14 December 2001 IMPROVE-2 Event. Part II: Comparisons of MM5 Model Simulations of Clouds and Precipitation with Observations , 2005 .

[5]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[6]  On the influence of assumed drop size distribution form on radar-retrieved thunderstorm microphysics , 2006 .

[7]  Ying-Hwa Kuo,et al.  Quantitative Precipitation Forecasting: Report of the Eighth Prospectus Development Team, U.S. Weather Research Program , 1998 .

[8]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[9]  Peter N. Johnson,et al.  Observations of Moist Adiabatic Ascent in Northeast Colorado Cumulus Congestus Clouds , 1978 .

[10]  C. Mass,et al.  The 13–14 December 2001 IMPROVE-2 Event. Part III: Simulated Microphysical Budgets and Sensitivity Studies , 2005 .

[11]  John Hubbert,et al.  Life Cycle and Precipitation Formation in a Hybrid-Type Hailstorm Revealed by Polarimetric and Doppler Radar Measurements , 1994 .

[12]  Véronique Ducrocq,et al.  A Radar Simulator for High-Resolution Nonhydrostatic Models , 2006 .

[13]  Jonathan J. Gourley,et al.  Data Quality of the Meteo-France C-Band Polarimetric Radar , 2006 .

[14]  Alexander V. Ryzhkov,et al.  THE JOINT POLARIZATION EXPERIMENT Polarimetric Rainfall Measurements and Hydrometeor Classification , 2005 .

[15]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[16]  Arnold Tafferner,et al.  Evaluating High-Resolution Model Forecasts of European Winter Storms by Use of Satellite and Radar Observations , 2003 .

[17]  Alexander V. Ryzhkov,et al.  Cloud Microphysics Retrieval Using S-Band Dual-Polarization Radar Measurements , 1999 .

[18]  Emmanouil N. Anagnostou,et al.  Simulation of radar reflectivity fields: Algorithm formulation and evaluation , 1997 .

[19]  V. Chandrasekar,et al.  Axis ratios and oscillations of raindrops , 1988 .

[20]  M. Baldwin,et al.  THE WGNE ASSESSMENT OF SHORT-TERM QUANTITATIVE PRECIPITATION FORECASTS , 2003 .

[21]  M. Blackburn,et al.  A GCSS model intercomparison for a tropical squall line observed during toga‐coare. II: Intercomparison of single‐column models and a cloud‐resolving model , 2000 .

[22]  A. Schroth,et al.  A C-Band Coherent Polarimetric Radar for Propagation and Cloud Physics Research , 1988 .

[23]  Jerry M. Straka,et al.  Testing a Procedure for Automatic Classification of Hydrometeor Types , 2001 .

[24]  Alexander V. Ryzhkov,et al.  Considerations for Polarimetric Upgrades to Operational WSR-88D Radars , 2000 .

[25]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[26]  Joanne Simpson,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations , 1995 .

[27]  Erik N. Rasmussen,et al.  Precipitation Uncertainty Due to Variations in Precipitation Particle Parameters within a Simple Microphysics Scheme , 2004 .

[28]  M. English,et al.  A Relationship Between Hailstone Concentration and Size. , 1983 .

[29]  Anthony J. Illingworth,et al.  Improved Precipitation Rates and Data Quality by Using Polarimetric Measurements , 2004 .

[30]  MELTING SNOWFLAKES: , 2022, The Perfect Vagina.

[31]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[32]  A. R. Holt The scattering of electromagnetic waves by single hydrometeors , 1982 .

[33]  Steven Businger,et al.  Hydrological Aspects of Weather Prediction and Flood Warnings: Report of the Ninth Prospectus Development Team of the U.S. Weather Research Program. , 2000 .

[34]  Susanne Crewell,et al.  Simulation of radar reflectivities using a mesoscale weather forecast model , 2000 .

[35]  T. Oguchi Electromagnetic wave propagation and scattering in rain and other hydrometeors , 1983, Proceedings of the IEEE.

[36]  J. Wyngaard,et al.  Resolution Requirements for the Simulation of Deep Moist Convection , 2003 .

[37]  Guifu Zhang,et al.  Improving Parameterization of Rain Microphysics with Disdrometer and Radar Observations , 2006 .

[38]  Roy Rasmussen,et al.  Multiparameter radar measurements in Colorado convective storms. Part I. Graupel melting studies , 1986 .

[39]  Sergey Y. Matrosov,et al.  Estimation of Ice Hydrometeor Types and Shapes from Radar Polarization Measurements , 1996 .

[40]  Wim Klaassen,et al.  Radar Observations and Simulation of the Melting Layer of Precipitation , 1988 .

[41]  P. Bauer,et al.  A Melting-Layer Model for Passive/Active Microwave Remote Sensing Applications. Part I: Model Formulation and Comparison with Observations , 2001 .

[42]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .

[43]  D. Zrnic,et al.  Sensitivity Analysis of Polarimetric Variables at a 5-cm Wavelength in Rain , 2000 .

[44]  Oleg A. Krasnov,et al.  Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations , 2007 .

[45]  Jothiram Vivekanandan,et al.  Rigorous Approach to Polarimetric Radar Modeling of Hydrometeor Orientation Distributions , 1991 .

[46]  P. Bauer,et al.  Model Rain and Clouds over Oceans: Comparison with SSM/I Observations , 2003 .

[47]  William A. Gallus,et al.  Intercomparison of simulations using 4 WRF microphysical schemes with dual-polarization data for a German squall line , 2007 .

[48]  A. Dörnbrack,et al.  Entrainment in Cumulus Clouds: What Resolution is Cloud-Resolving? , 2008 .

[49]  A. S. Omar,et al.  Scattering by Dielectric Obstacles Inside Guiding Structures , 1984 .

[50]  Jothiram Vivekanandan,et al.  Polarimetric radar modeling of mixtures of precipitation particles , 1993, IEEE Trans. Geosci. Remote. Sens..

[51]  Véronique Ducrocq,et al.  Le projet AROME , 2005 .

[52]  Andrew J. Heymsfield,et al.  The Characteristics of Graupel Particles in Northeastern Colorado Cumulus Congestus Clouds , 1978 .

[53]  J. Steppeler,et al.  Meso-gamma scale forecasts using the nonhydrostatic model LM , 2003 .

[54]  Craig F. Bohren,et al.  Radar Backscattering of Microwaves by Spongy Ice Spheres. , 1982 .

[55]  Frédéric Fabry,et al.  Modeling of the Melting Layer. Part II: Electromagnetic , 1999 .

[56]  P. Barber,et al.  Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. , 1975, Applied optics.

[57]  P. Ray,et al.  Broadband complex refractive indices of ice and water. , 1972, Applied optics.

[58]  Martin Köhler,et al.  Modelling the diurnal cycle of deep precipitating convection over land with cloud‐resolving models and single‐column models , 2004 .

[59]  Michele D'Amico,et al.  A Multiparameter Polarimetric Radar Simulator , 2001 .

[60]  A polarimetric radar forward operator , 2005 .

[61]  Jothiram Vivekanandan,et al.  Multiparameter Radar Modeling and Observations of Melting Ice , 1990 .

[62]  Hans J. Liebe,et al.  Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz , 1993 .

[63]  Urs Germann,et al.  Effects of Radar Beam Shielding on Rainfall Estimation for the Polarimetric C-Band Radar , 2007 .

[64]  Isztar Zawadzki,et al.  Modeling of the melting layer. Part I : Dynamics and microphysics , 1999 .

[65]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Principles and Applications , 2001 .