A Fuzzy Borda Count in Multi-person Decision Making

Inspired by the Borda count, in this paper we introduce a “fuzzy Borda count”. It is obtained by means of score graduation and normalization processes from its original pattern. The advantages of the Borda count hold, and are even improved, and its drawbacks are somehow corrected, providing an appropriate scheme in multi-person decision making. In addition, these Borda counts are related to approval voting, establishing a unified framework from distinct points of view.

[1]  D. Saari,et al.  The Copeland method , 1996 .

[2]  Juan Carlos Candeal,et al.  Aggregation of preferences from algebraic models on groups , 1995 .

[3]  R. Deb,et al.  Transitivity and fuzzy preferences , 1996 .

[4]  Arnold B. Urken,et al.  Classics of social choice , 1995 .

[5]  D. Saari Basic Geometry of Voting , 1995 .

[6]  Thierry Marchant,et al.  Does the Borda rule provide more than a ranking? , 2000, Soc. Choice Welf..

[7]  Andranik Tangian,et al.  Unlikelihood of Condorcet’s paradox in a large society , 2000, Soc. Choice Welf..

[8]  R. Sugden The political economy of public choice : an introduction to welfare economics , 1981 .

[9]  Graciela Chichilnisky,et al.  Necessary and Sufficient Conditions for a Resolution of the Social Choice Paradox , 1981 .

[10]  K. Arrow Social Choice and Individual Values , 1951 .

[11]  A. Sen,et al.  Social Choice Theory: A Re-Examination , 1977 .

[12]  Ariel Rubinstein,et al.  A further characterization of Borda ranking method , 1981 .

[13]  Andranick S. Tanguiane,et al.  Aggregation and Representation of Preferences: Introduction to Mathematical Theory of Democracy , 1991 .

[14]  James R. Parker,et al.  Voting methods for multiple autonomous agents , 1995, Proceedings of Third Australian and New Zealand Conference on Intelligent Information Systems. ANZIIS-95.

[15]  H. Nurmi Approaches to collective decision making with fuzzy preference relations , 1981 .

[16]  Juan Carlos Candeal,et al.  Some issues related to the topological aggregation of preferences , 1992 .

[17]  J. Bezdek,et al.  Fuzzy partitions and relations; an axiomatic basis for clustering , 1978 .

[18]  Bonifacio Llamazares,et al.  Aggregation of fuzzy preferences: Some rules of the mean , 2000, Soc. Choice Welf..

[19]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[20]  M. Le Bretons,et al.  On the robustness of the impossibility result in the topological approach to social choice , 1990 .

[21]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[22]  J. Bezdek,et al.  A fuzzy relation space for group decision theory , 1978 .

[23]  A. Tanguiane Aggregation and Representation of Preferences , 1991 .

[24]  H. Young Optimal Voting Rules , 1995 .

[25]  D. Black The theory of committees and elections , 1959 .

[26]  T. Tanino Fuzzy preference orderings in group decision making , 1984 .

[27]  Michael Dummett,et al.  The Borda count and agenda manipulation , 1998 .

[28]  H. P. Young,et al.  An axiomatization of Borda's rule , 1974 .

[29]  R. J. Mokken,et al.  Collective judgement: combining individual value judgements , 1999 .

[30]  Duncan Black,et al.  Partial justification of the Borda count , 1976 .

[31]  Jean Pierre Brans,et al.  Agrégation de relations valuées par la méthode de Borda, en vue d'un rangement: considérations axiomatiques , 1996 .

[32]  Donald G. Saari,et al.  A geometric examination of Kemeny's rule , 2000, Soc. Choice Welf..

[33]  P. Fishburn Multiperson Decision Making: A Selective Review , 1990 .

[34]  Philip D. Straffin,et al.  Topics in the theory of voting , 1980 .

[35]  I. McLean Independence of irrelevant alternatives before Arrow , 1995 .

[36]  Bernard Debord,et al.  An axiomatic characterization of Borda's k-choice function , 1992 .