A Fuzzy Borda Count in Multi-person Decision Making
暂无分享,去创建一个
[1] D. Saari,et al. The Copeland method , 1996 .
[2] Juan Carlos Candeal,et al. Aggregation of preferences from algebraic models on groups , 1995 .
[3] R. Deb,et al. Transitivity and fuzzy preferences , 1996 .
[4] Arnold B. Urken,et al. Classics of social choice , 1995 .
[5] D. Saari. Basic Geometry of Voting , 1995 .
[6] Thierry Marchant,et al. Does the Borda rule provide more than a ranking? , 2000, Soc. Choice Welf..
[7] Andranik Tangian,et al. Unlikelihood of Condorcet’s paradox in a large society , 2000, Soc. Choice Welf..
[8] R. Sugden. The political economy of public choice : an introduction to welfare economics , 1981 .
[9] Graciela Chichilnisky,et al. Necessary and Sufficient Conditions for a Resolution of the Social Choice Paradox , 1981 .
[10] K. Arrow. Social Choice and Individual Values , 1951 .
[11] A. Sen,et al. Social Choice Theory: A Re-Examination , 1977 .
[12] Ariel Rubinstein,et al. A further characterization of Borda ranking method , 1981 .
[13] Andranick S. Tanguiane,et al. Aggregation and Representation of Preferences: Introduction to Mathematical Theory of Democracy , 1991 .
[14] James R. Parker,et al. Voting methods for multiple autonomous agents , 1995, Proceedings of Third Australian and New Zealand Conference on Intelligent Information Systems. ANZIIS-95.
[15] H. Nurmi. Approaches to collective decision making with fuzzy preference relations , 1981 .
[16] Juan Carlos Candeal,et al. Some issues related to the topological aggregation of preferences , 1992 .
[17] J. Bezdek,et al. Fuzzy partitions and relations; an axiomatic basis for clustering , 1978 .
[18] Bonifacio Llamazares,et al. Aggregation of fuzzy preferences: Some rules of the mean , 2000, Soc. Choice Welf..
[19] Lotfi A. Zadeh,et al. Similarity relations and fuzzy orderings , 1971, Inf. Sci..
[20] M. Le Bretons,et al. On the robustness of the impossibility result in the topological approach to social choice , 1990 .
[21] S. Shapiro,et al. Mathematics without Numbers , 1993 .
[22] J. Bezdek,et al. A fuzzy relation space for group decision theory , 1978 .
[23] A. Tanguiane. Aggregation and Representation of Preferences , 1991 .
[24] H. Young. Optimal Voting Rules , 1995 .
[25] D. Black. The theory of committees and elections , 1959 .
[26] T. Tanino. Fuzzy preference orderings in group decision making , 1984 .
[27] Michael Dummett,et al. The Borda count and agenda manipulation , 1998 .
[28] H. P. Young,et al. An axiomatization of Borda's rule , 1974 .
[29] R. J. Mokken,et al. Collective judgement: combining individual value judgements , 1999 .
[30] Duncan Black,et al. Partial justification of the Borda count , 1976 .
[31] Jean Pierre Brans,et al. Agrégation de relations valuées par la méthode de Borda, en vue d'un rangement: considérations axiomatiques , 1996 .
[32] Donald G. Saari,et al. A geometric examination of Kemeny's rule , 2000, Soc. Choice Welf..
[33] P. Fishburn. Multiperson Decision Making: A Selective Review , 1990 .
[34] Philip D. Straffin,et al. Topics in the theory of voting , 1980 .
[35] I. McLean. Independence of irrelevant alternatives before Arrow , 1995 .
[36] Bernard Debord,et al. An axiomatic characterization of Borda's k-choice function , 1992 .