On the numerical radius of matrices and its application to iterative solution methods
暂无分享,去创建一个
O. Axelsson | B. Polman | H. Lu | O. Axelsson | B. Polman | H. Lu | H. Lu
[1] D. Young. Iterative methods for solving partial difference equations of elliptic type , 1954 .
[2] Richard S. Varga,et al. Orderings of the successive overrelaxation scheme , 1959 .
[3] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[4] C. Pearcy. An elementary proof of the power inequality for the numerical radius. , 1966 .
[5] O. Axelsson. A generalized SSOR method , 1972 .
[6] O Axelsson,et al. On preconditioning and convergence acceleration in sparse matrix problems , 1974 .
[7] Eitan Tadmor,et al. Numerical radius of positive matrices , 1975 .
[8] O. Axelsson. Solution of linear systems of equations: Iterative methods , 1977 .
[9] Charles R. Johnson. NUMERICAL DETERMINATION OF THE FIELD OF VALUES OF A GENERAL COMPLEX MATRIX , 1978 .
[10] E. Tadmor,et al. On the Numerical Radius and Its Applications , 1982 .
[11] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[12] A generalization of spectral radius, numerical radius, and spectral norm , 1987 .
[13] M. N. Spijker,et al. A generalization of the numerical range of a matrix , 1990 .
[14] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[15] Michael Eiermann,et al. Fields of values and iterative methods , 1993 .
[16] G. Starke. Fields of values and the ADI method for non-normal matrices , 1993 .
[17] O. Axelsson,et al. On Eigenvalue Estimates for Block Incomplete Factorization Methods , 1995, SIAM J. Matrix Anal. Appl..