On the numerical radius of matrices and its application to iterative solution methods

Uses of the numerical radius in the analysis of basic iterative solution methods, of the SOR method for quasi-Hermitian positive definite matrices (not being consistently ordered) and of maximal eigenvalues of symmetric positive definite matrices using incomplete block-matrix factorizations are presented.

[1]  D. Young Iterative methods for solving partial difference equations of elliptic type , 1954 .

[2]  Richard S. Varga,et al.  Orderings of the successive overrelaxation scheme , 1959 .

[3]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[4]  C. Pearcy An elementary proof of the power inequality for the numerical radius. , 1966 .

[5]  O. Axelsson A generalized SSOR method , 1972 .

[6]  O Axelsson,et al.  On preconditioning and convergence acceleration in sparse matrix problems , 1974 .

[7]  Eitan Tadmor,et al.  Numerical radius of positive matrices , 1975 .

[8]  O. Axelsson Solution of linear systems of equations: Iterative methods , 1977 .

[9]  Charles R. Johnson NUMERICAL DETERMINATION OF THE FIELD OF VALUES OF A GENERAL COMPLEX MATRIX , 1978 .

[10]  E. Tadmor,et al.  On the Numerical Radius and Its Applications , 1982 .

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  A generalization of spectral radius, numerical radius, and spectral norm , 1987 .

[13]  M. N. Spijker,et al.  A generalization of the numerical range of a matrix , 1990 .

[14]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[15]  Michael Eiermann,et al.  Fields of values and iterative methods , 1993 .

[16]  G. Starke Fields of values and the ADI method for non-normal matrices , 1993 .

[17]  O. Axelsson,et al.  On Eigenvalue Estimates for Block Incomplete Factorization Methods , 1995, SIAM J. Matrix Anal. Appl..