Mixing for Markov Chains and Spin Systems

[1]  Peter Winkler,et al.  A note on the last new vertex visited by a random walk , 1993, J. Graph Theory.

[2]  Milena Mihail,et al.  Conductance and convergence of Markov chains-a combinatorial treatment of expanders , 1989, 30th Annual Symposium on Foundations of Computer Science.

[3]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[4]  Jeremy Quastel,et al.  Diffusion of color in the simple exclusion process , 1992 .

[5]  P. Diaconis,et al.  Strong Stationary Times Via a New Form of Duality , 1990 .

[6]  N. Varopoulos Isoperimetric inequalities and Markov chains , 1985 .

[7]  P. Diaconis,et al.  SHUFFLING CARDS AND STOPPING-TIMES , 1986 .

[8]  Elchanan Mossel,et al.  On the mixing time of a simple random walk on the super critical percolation cluster , 2000 .

[9]  Ravi Kannan Rapid mixing in Markov chains , 2003 .

[10]  László Lovász,et al.  Faster mixing via average conductance , 1999, STOC '99.

[11]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[12]  Thierry Coulhon,et al.  A geometric approach to on-diagonal heat kernel lower bounds on groups , 2001 .

[13]  Y. Peres,et al.  Evolving sets, mixing and heat kernel bounds , 2003, math/0305349.

[14]  Thierry Coulhon,et al.  Ultracontractivity and Nash Type Inequalities , 1996 .

[15]  Johan Jonasson,et al.  Rates of convergence for lamplighter processes , 1997 .

[16]  É. Remy,et al.  Isoperimetry and heat kernel decay on percolation clusters , 2003, math/0301213.

[17]  Prasad Tetali,et al.  Isoperimetric Invariants For Product Markov Chains and Graph Products , 2004, Comb..

[18]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[19]  Peter Winkler Rapid mixing , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[20]  Ravi Montenegro,et al.  Edge isoperimetry and rapid mixing on matroids and geometric Markov chains , 2001, STOC '01.

[21]  P. Diaconis,et al.  Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques , 2004, math/0401318.

[22]  Alistair Sinclair,et al.  Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.

[23]  A. Sokal,et al.  Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .

[24]  Shing-Tung Yau,et al.  Eigenvalues of Graphs and Sobolev Inequalities , 1995, Combinatorics, Probability and Computing.