Theoretical predictions for hot-carrier generation from surface plasmon decay

Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1–2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant.

[1]  F J García de Abajo,et al.  Quantum plexcitonics: strongly interacting plasmons and excitons. , 2011, Nano letters.

[2]  M Paternostro,et al.  Single-photon excitation of surface plasmon polaritons. , 2008, Physical review letters.

[3]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[4]  T. Tatsuma,et al.  Solid state photovoltaic cells based on localized surface plasmon-induced charge separation , 2011 .

[5]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[6]  E. Gross,et al.  Time-dependent density functional theory. , 2004, Annual review of physical chemistry.

[7]  P. Ajayan,et al.  Plasmon-induced doping of graphene. , 2012, ACS nano.

[8]  Yimin Kang,et al.  Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer , 2014, Advanced materials.

[9]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[10]  K. Tu,et al.  Electrical characterization of Schottky contacts of Au, Al, Gd, and Pt on n‐type and p‐type GaAs , 1987 .

[11]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[12]  P. Nordlander,et al.  Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. , 2011, The Journal of chemical physics.

[13]  J. M. Elson,et al.  Photon Interactions at a Rough Metal Surface , 1971 .

[14]  Yurii K. Gun'ko,et al.  Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules , 2013 .

[15]  Peter Nordlander,et al.  Plasmon-induced hot carriers in metallic nanoparticles. , 2014, ACS nano.

[16]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[17]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[18]  D. A. Shirley,et al.  Angle-resolved photoemission determination of. lambda. -line valence bands in Pt and Au using synchrotron radiation , 1980 .

[19]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[20]  Peter Nordlander,et al.  Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device , 2013, Nature Communications.

[21]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[22]  Jun Yan,et al.  Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study , 2012, 1212.3011.

[23]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[24]  M. Tame,et al.  Long-range surface plasmon polariton excitation at the quantum level , 2009, 0901.3972.

[25]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[26]  G. Rignanese,et al.  Band structure of gold from many-body perturbation theory , 2012, 1203.4508.

[27]  Jean-Jacques Greffet,et al.  Quantum theory of spontaneous and stimulated emission of surface plasmons , 2010, 1004.0135.

[28]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[29]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[30]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[31]  Vladimir M. Shalaev,et al.  Plasmonics Goes Quantum , 2011, Science.

[32]  S. Hüfner,et al.  Photoemission experiments on copper , 1984 .

[33]  N. Melosh,et al.  Plasmonic energy collection through hot carrier extraction. , 2011, Nano letters.

[34]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[35]  D. A. Shirley,et al.  Valence-band structure of silver along Λ from angle-resolved photoemission , 1979 .

[36]  T. T. Rantala,et al.  Kohn-Sham potential with discontinuity for band gap materials , 2010, 1003.0296.

[37]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[38]  Yannick Sonnefraud,et al.  Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. , 2012, Nano letters.

[39]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[40]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.